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Abstract

 Glaciers in the Hindu Kush-Karakoram-Himalaya region impact Earth's climate, contribute freshwater 
downstream, and influence weather patterns of precipitation and temperature. However, the region needs 
more detailed information about its glaciers. Specifically, the stability of glaciers in the Karakoram range of 
the Hunza sub-basin is a well-known anomaly. Therefore, monitoring its glaciers is needed to understand the 
dynamics of climate change in HKH. Glacier inventory is baseline data for monitoring, and the clear-ice 
surface is a quantifying parameter of glacier changes. Recently, Operational Land Imager (OLI), exploited 
with machine learning (ML), is highly recommended for glacier monitoring due to improved accuracy. So, it 
is necessary to update the current status of glaciers in sub-basin using OLI and ML. Therefore, the study aims 
a) to evaluate the current extent of clear ice in the sub-basin to examine stability and b) to exploit the 
application of ML for extracting clear ice from OLI and assess accuracy. Google Earth environment is used to 
derive the data of Optical Land Imager and further analyze it with a machine learning approach to classify the 
extent of clear ice. Random Forest classifier with minimum Root means square error (0.1 to 0.4) used through 
SNAP environment. Results indicate satisfactory spatial distribution of clear ice in higher elevations (> 5000 

2meters). 10 % area difference percentage exhibited in overall extent; however, 28 glaciers (area > 5 km ) 
showed variation in the extent and confirmed the localized heterogeneity. Overall accuracy (82% to 83 %) 
and kappa coefficient values (0.64 to 0.65) confirm the role of individual bands of OLI. It is concluded that the 
glaciers in the sub-basin have an overall stable clear-ice extent except for variations in terminal ends. 
Meanwhile, machine learning has a significant role in the automatic extraction of clear ice when exploited 
with the OLI.

Keywords: Machine Learning; Random Forest; Mountain Glacier; Himalaya; Operational Land Imager: 
Climate Change: Hunza Sub-Basin.

1.  Introduction       
    
    Mountainous glaciers have become one 
of the essential climate indicators and a 
sensitive interface to the changes in climate 
factors, such as temperature, precipitation, and 
snowfall, which are significantly related to the 
changes in glacier physical properties (Haireti 
et al., 2015). Information about glaciers 
becomes more pertinent to study for deriving 
local climate information in areas where 
climate stations and instrumentations are 
unavailable and inaccessible (Bolch et al., 
2012).  Besides the physical changes, 
mountainous glaciers are also a major 
contributor to providing fresh water to the 

downstream basins (Huss et al., 2017). 
Therefore ,  cont inuous moni tor ing of 
mountainous glaciers is needed to understand 
the dynamics of climate change and water 
security. Comprehensive information about the 
glacier attributes is available in glacier 
inventory, which has become the baseline data 
for climate change assessment (IPCC, 2013), 
hydrological modeling and prediction, river 
run-off estimation, sea-level rise, and glacier 
modeling (Kraaijenbrink et al., 2017). To date, 
there are many glacier inventories established, 
and sharing the large and regional-scale glacier 
data with public, such as the Glacier Area 
Mapping for Discharge from the (Missions 
and Catalogue, 2022) Asian Mountains
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(GAMDAM) glacier inventory (Sakai, 2019), 
Chinese Glacier Inventory (Guo et al., 2015), 
Randolph Glacier Inventory (Pfeffer et al., 
2014), Glacier inventory of Pamir and 
Karakoram (Mölg et al., 2018b) and Status of 
Glacier in the Hindu-Kush Karakoram 
Himalaya (HKH) inventory (Bajracharya and 
Shrestha, 2011; Minora et al. ,  2016). 

 The Hindu Kush Himalayas (HKH) is the 
primary mountain range in Central Asia, 
hosting the most concentrated collection of 
mountain glaciers in the world. These glaciers 
account for almost one-sixth of the global ice 
cover, making it the world's third Pole 
(Bajracharya and Shrestha, 2011; Dyhrenfurth, 

2 1955). This region stretches over 60,000 km
and has three mighty mountainous ranges with 
dynamic climatic zones. Glaciers in the 
Karakoram and western Himalaya region 
mainly contribute fresh water for the Indus 
basin. These glaciers contribute not only to 
agriculture production, accounting for 90%, but 
also provide 13 Gigawatts of hydroelectricity to 
the downstream population (Cook et al., 2013). 
The Karakoram glaciers occupy a more 
significant part of the glaciated area in the 
Upper Indus Basin (UIB), which includes half 
of the glacier's population in the HKH (Khan et 
al., 2015). In UIB, the Hunza sub-basin is 
famous for  i ts  heterogeneous glacier 
characteristics but has possessed stable glacier 
extent since 1970 with a mass budget of -
0.09±0.03 m.w.e.a-1 from 1970 to 2000 (Bolch 
et al., 2017). Despite being focused on research 
studies, the Hunza sub-basin is experiencing 
extreme topographic and climate conditions 
along with frequent glacier surging. Moreover, 
there is a lack of quantitative and qualitative 
knowledge of regional glaciology in terms of its 
topography, climate, and glacier variations 
(Baig et al., 2018). This glacier range 
experiences stability in glacier extents and 
exhibits the famous Karakoram Pamir 
Anomaly, which contrasts with the global 
climate change trends (Syed et al., 2018). 
Hence, knowledge about the current glacier 
extent and the nature of the changes in the 
Hunza basin  is  important  to  support 
downstream hydrology and water resource 
management. Therefore, there is a need for 
continuous monitoring and updating of the 
basin's glacier inventory.

 Spaceborne remote sensing is an effective 
tool to monitor any inaccessible large 
mountainous glacier region, and multispectral 
remote sensing with medium resolution 
becomes the typical remote sensing variant in 
glacier studies (Paul et al., 2015). Optical 
remote sensing spanned over four decades of 
continuous glacier monitoring missions. It 
started with the launch of Earth Resource Tech 
(Krimmel and Meier, 1975), and in 2013, the 
multispectral Operational Land Imager (OLI) 
onboard in Landsat 8 mission with improved 
sensing capabilities is a significant addition 
(Syed et al., 2018). This improved capacity of 
Landsat 8 is equipped with additional bands 
compared to its predecessor through optical and 
thermal regions. Furthermore, it is superior in 
terms of all spatial and spectral resolutions, and 
the radiometric resolution of 16 bits is a 
significant improvement over traditional 8-bit 
Landsat data (Linghong et al., 2016).

 The latest glacier inventories of UIB, 
including the Karakoram glaciers of the Hunza 
sub-basin, are largely developed based on 
optical satellite imageries (Khan et al., 2015). 
An essential aspect of these inventories is the 
delineation of clear ice and debris cover 
separa te ly  wi th  d i fferent  under ly ing 
methodologies. The mapping of clean ice is 
important to quantify the changes over time as a 
requirement by the World Glacier Monitoring 
System (ICIMOD, 2010). Therefore, most of 
the previous studies, i.e., Mölg et al. (2018a), 
Robson et al. (2015), and Guo et al. (2015) for 
mapping of the glaciers have delineated the 
clear ice surfaces separately. 

 The regional inventory reported by Mölg 
et al. (2018a) used a well-established semi-
automatic band ratio method to classify the 
clean ice and snow part of the glacier surface by 
exploiting Landsat-7 spectroscopic capabilities 
and discussed the status of glaciers from 2001 
to 2010 of Central Karakoram National Park. 
Bajracharya and Shrestha (2011) has extracted 
the clear ice features from Landsat-5 and 
Landsat-7 imageries from observation in the 
year 2005±3 through the Normalized 
Difference Snow Index (NDSI). The traditional 
N D S I  m e t h o d  i s  s u s c e p t i b l e  t o 
misclassification errors, and therefore, 
Bajracharya and Shrestha (2011) further
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refined the results using the Normalized 
Difference Vegetation Index (NDVI), Land and 
Water Mask (LWM), hue for misclassified 
vegetation, water bodies, and shadows 
respectfully. Local inventory with the long 
status of glaciers from 2001 to 2010 in Central 
Karakoram was created by Mölg et al. (2018a), 
who followed the recommendations from a 
previous study by Paul et al. (2009) to use the 
band ratio approach for compiling the snow and 
ice information in the inventory. The latest 
version, 6.0 of the globally referenced 
Randolph Glacier Inventory (RGI), which is an 
unchanged version of 5.0 for the Karakoram 
region, was composed of contributions from 
regional inventories, and most of the clear ice 
information was extracted based on band ratio 
methods in the inventories (Arendt et al., 2017). 
Many studies have used the band ratio method 
for extracting the clear ice information from 
satellite imagery for the global, regional, and 
local inventories, and the same has been 
exploited in larger glacier extents of the Hunza 
basin (Khan et al., 2015). Threshold values of 
band ratios, which are determined empirically, 
are used to differentiate glacier ice and non-
glaciated surfaces. However, this approach is 
unsuccessful when the ice needs to be separated 
from snow, water bodies, and debris-covered 
glacier terrain (Racoviteanu et al., 2009). It is 
also challenging to fix the threshold value 
because a minor variation in the value may 
increase the number of misclassified pixels 
(Paul et al., 2013). Moreover, the band ratio 
method also fails when glaciers need to be 
separated from urban areas (Lary et al., 2016). 
To complement the band ratio method and 
improve the accuracy and efficiency of clean 
ice extraction, the Machine Learning (ML) 
approach was introduced in previous studies 
during the last decade (Zhang et al., 2019). In 
addition to that, improved classification 
approaches in remote sensing have been 
developed recently, using machine learning 
algorithms like Random Forest (RF), Support 
Vector Machine, Artificial Neural Networks, 
etc. (Hussain and Khan, 2020). At the same 
time, ML is also good for training models 
adequately, even on data sets of high 
dimensions and with poor signal-to-noise ratios 
(Maxwell et al., 2018). RF as a machine 
learning algorithm is a promising classifier for 
mapping different earth features using remotely 

sensed data (Krishna et al., 2018), and many 
appl ica t ions  have  been  repor ted  fo r 
advancements in mapping landcover changes 
and water using RF (Wessels et al., 2016; 
Mueller et al., 2016). The potential of RF to 
analyze Glacier Lakes Out Burst phenomena 
for spectrally variable target classes such as 
glacial lakes (Veh et al., 2018) makes it a viable 
choice of method to replace the single 
parametric approaches for spectrally variable 
mountainous  glacia ted surfaces .  The 
application of machine learning to delineate 
clean ice glaciers using the recent Landsat OLI 
imageries is yet unexplored, and this study is 
motivated by the radiometric and spectral 
quality of Landsat 8 and the advantages of 
machine learning to map mountainous glaciers, 
particularly clean ice at higher accuracy for 
updating the HKH inventory (Syed et al., 
2018).

 This study aims (a) to provide an overview 
of the current extent of clear ice in the Hunza 
sub basin to inquire about the stability of the 
heterogeneous glacier in the basin, b) to explore 
the application of machine learning to apply all 
the combinations of band ratio to extract clear 
ice surface from the given optical data over the 
study area, and c) to assess the efficiency of the 
adopted methodology of machine learning by 
analyzing the accuracy and validation for 
extraction of clear ice in mountainous regions 
through optical data.

2.  Study area and Datasets

1.1.  Study Area

 The study area is the Huzza sub basin of 
UIB, located in the upper North of HKH region 
and surrounded by the mountain range of 
Karakoram see Figure 1. The area extends 
between longitude of 74 to 76 degrees East and 
latitude of 35 to 37-degree North with the 
elevation ranges from 2000 to 8500 meters. The 
mean elevation of glaciers is between 4000 to 
6000 m. This area has been listed in glacier 
inventories developed by Mölg et al. (2018b) 
and Bajracharya and Shrestha (2011). The 

2former inventory has a total area of 13987 km , 
derived from the observations of Landsat-5 TM 
and Landsat-7 ETM+ between 1998 to 2002. It 
identified a total of 421 glaciers, each with an
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area of above 02 km2. The latter is developed 
from imageries of Landsat-5 MSS and Landsat-
7 ETM+ taken for the year 2005±3 and listed 

453 glaciers in the total area of 12677 km2 for 
the clear surface glaciers.  

Fig. 1. Study area map showing geographic extent of HKH and Upper Indus Basin 
with sample glaciers exposed.

 Climatically, the region is influenced by 
two sources of precipitation, i.e., monsoon and 
depression coming from the west, which rise to 
600 mm at an altitude of 4400 and above 
(Immerzeel et al., 2015). This pattern of 
precipitation is responsible for summer and 
winter accumulation in the glaciated surfaces 
(Wiltshire, 2014) which variates the magnitude 
of clear ice surface in a specific glacier. Any 
change in glacier magnitude triggers glacier 
surging phenomena, that is why glaciers of the 
Karakoram range in the region are famous for 
the frequent surges, as reported in many of the 
studies, which complicate analysis to quantify 
the glacier statistics (Bolch et al., 2017).

2.2.  Satellite data

 The Landsat 8 series, equipped with the 
Operational Land Imager (OLI), was launched 
in February 2013. OLI is the continuation of 

a rch iv ing  modera te  reso lu t ion  ea r th 
observation data, which has a significant 
improvement compared to the previous series 
of Landsat 5 & 7; push broom sensor type, long 
array of detectors, and additional bands of 
Cirrus and Coastal Aerosol are some of the 
sensor improvements provided by OLI 
(Markham et al., 2010). Glacier extractions 
have  been  per fo rmed  us ing  Landsa t 
commissioned sensors for the last three 
decades, and the application of OLI sensor for 
glacier extraction gets more attraction due to 
adjusted bands, specifically the adjustment of 
the Near Infrared band to exclude at least 825 
nm of moisture absorption (Wang et al., 2017).

2.3. Preparation of data using Google Earth 
Engine

 Google Earth Engine (GEE), coupled with 
advances in data storage and computational
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capabilities, is a paradigm shift in space-borne 
remote sensing data storage (Chastain et al., 
2019). It is a cloud-based integrated platform 
designed to empower remote sensing scientists 
to utilize cloud computing resources (Gorelick 
et al., 2017) and provides user-friendly access 
through commonly used Google Mail 
credentials. The advent of GEE services makes 
it feasible to access, manipulate, and analyze 
tremendous volumes of open-access earth 
observation data. Availability of Top of 

Atmospheric (ToA) reflectance images of OLI 
for most of the sites across the globe are one of 
the tremendous contributions of GEE, and the 
ToA data is processed by extracting the 
calibration coefficient from image metadata by 
exploiting the approach discussed in (Chander 
et al., 2009). Moreover, the capability of GEE 
minimized the burden on the user's part to 
remove differences due to the atmospheric 
effects, which are needed to enhance the 
reliability of the data (Zhang et al., 2018).

Table 1: List of selected OLI Bands of Landsat-8

 Therefore, in this study, selected spectral 
bands of OLI with ToA data were extracted for 
the required spatial and temporal extent 
through GEE (spatial extent of Hunza sub-
basin and temporal extent of the ablation period 
for the year 2018 (July 15 to Oct 15)). The 
details of spectral characteristics of OLI bands 

are given in Table 1. All data extracted through 
GEE is sorted, filtered, and cloud-masked to the 
desired spatial and temporal extent. Table 2 lists 
the available Landsat images that are exploited 
in GEE from World Reference System 2 
(WRS2) of the Hunza sub-basin over the 
ablation period of 2018. 

Table 2: Available Images of Landsat 8 for the study area for spatial and temporal extent
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2.4. Glacier Inventories

 The glacier boundaries are essential for 
glacier identification, and the interlinked 
international glacier inventories of RGI Version 
5.0 provide the completeness of coverage for 
the glaciated region of the study area. However, 
the boundaries are not recommended for any 
change assessment and measurement of any 
rate of change in the glacier area (Arendt et al., 
2017). Therefore, only for the completeness of 
the glacier area in the Hunza basin were RGI 
glacier boundaries covering the basin clipped 
from the data set. To account for the previous 
status of the glacier's clear ice surface, data on 
glacier outline for clear ice were downloaded 
from the ICIMOD portal (Bajracharya and 
Shrestha, 2011) and linked GIS files of the 
Glacier inventory of Pamir and Karakoram 
(Mölg et al., 2018b) for years 2002 to 2008 and 
1998 to 2002 respectively.

2.5. Ancillary data

 Shuttle Radar Topographic Mission 
(SRTM) data version 3.0 provides topographic 
information about slope, aspect, and elevation 
in 30-meter resolution to complement other 
optical imageries and vector data of glaciers 
(Alifu et al., 2015). Along with optical and 
vector data for the study area, SRTM DEM 
version 3.0, downloaded from USGS Earth 
Explorer, is used to extract the topography 
(slope, aspect, and elevation) of the study area. 
The SRTM DEM Version 3.0 data was 
downloaded from USGS Earth Explorer.  Voids 
occurred in the earlier versions of SRTM DEM, 
which are filled later on version 3.0, using 
interpolation and hole-filling algorithms 
through ancillary. Now, the elevation model is 
provided with an overall accuracy of ±16 m 
with a 95% confidence level (Elkhrachy, 2018). 
Additional vector data for the HKH region and 
UIB boundary was downloaded from the 
regional database of ICIMOD was acquired 
from Shabeh ul (2016). 

 All datasets were defined with the 
coordinate system of the World Geodetic 
System (WGS 84) and projected with Universal 
Transverse Mercator (UTM) Zone 43 North. 
Furthermore, three topographic parameters 
(elevation, slope, and aspect) were generated 

along with the extraction of NDSI and eight 
different combinations of band ratios 
(Red/SWIR1, Red/SWIR2, Blue/SWIR1, 
Blue/SWIR2, Green/SWIR1, Green/SWIR2, 
NIR/SWIR1 and NIR/SWIR2) from the 
multispectral data of OLI. Ground Control 
points (GCPs) were collected over the clear ice 
surface by exposing clear ice using RGB 
composite Figure 3 of Landsat-8 with a 
combination of NIR, Red, and Green (Khan et 
al., 2015).

3.  Methodology

 The research framework for this study is 
illustrated in Figure 2; the three major steps are 
further explained in the subsequent sections.

3.1.  GEE Pre-processing

 J a v a  s c r i p t e d  t h e  C o d e  E d i t o r 
environment of GEE, which was used for the 
collection of Tier 1 calibrated TOA reflectance 
of selected OLI optical bands through Engine 
Snippet. It is important to note that OLI raw 
scenes in GEE contain digital numbers in 
radiance scale, and the conversion to ToA is a 
linear transformation that accounts for solar 
elevation and seasonally variable Earth-Sun 
distance. This transformation approach, as 
discussed in (Chander et al., 2009) and handled 
by ee.Algorithms.Landsat. TOA. In calculating 
the extent of clear ice in optical remote sensing 
data, cloud cover is always an issue for 
mountainous glacier monitoring (Ke et al., 
2015). To avoid the impact of cloud cover for 
glacier extraction, the cloud Score algorithm 
was used for OLI data with a threshold value of 
25% through ee .Algorithms.Landsat.
SimpleCloudScoremethod.

3.2.  Ground Control Points Selection and 
Percentile Analysis

 Ground Control Points (GCPs) are placed 
on the glaciated surface of the study area, 
referred to in Figure 3 based on exposed clear 
ice in visual interpretation of False color 
composi te  (FCC) of  OLI with bands 
combination of SWIR, NIR, band 3 for red, 
blue and green channels respectively.  This 
particular band combination enables clear 
discrimination between snow, ice, and other
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features (Kaab et al., 2014). GCPs needed to 
predict the threshold value for specific band 
ratios as training classes to classify clear ice 
using random forest analysis. Band statistics 
are used to estimate the minimum value using 
the percentile analysis by mapping the GCPs, 
and it shows the percentage of mapped pixels 
less than the calculated value. A total of 1233 
well-distributed GCPS over exposed clear ice 
was used as a training set for the total 
population of pixels showing the clear ice.

 Minimum threshold values for each Band 
ratios (BR) training classes were calculated 
using GCPs. The required training class was 
characterized with pixels exceeding a given 
threshold value, and was defined as the 
minimum percentile of GCPs through Sentinel 

thApplication Platform, i.e. 5  percentile of all 
GCPs over a specific BR (meaning 5% of GCPs 
placed over pixels of training class equal to or 
less than a threshold value).  

Fig. 2. Flow chart for extraction of clear ice from Hunza sub-basin
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Fig. 3. Example of sample glaciers exposed with clear ice surface in RGB composite of OLI 
with band combination of SWIR, NIR & Green over ablation period of year 2018. 

Yellow dots are GCPs over clear ice used as training data.

3.3.  Band Ratios and Snow index

 Multispectral data during the ablation 
period (July 15–Oct 15, 2018) with a minimum 
cloud of 25% acquired from the GEE 
environment, used to develop 08 BRs; the 
visible and NIR bands are used with SWIR 
bands to extract the ratio reflectance over the 
clear ice surface. This combination of bands has 
been used extensively in previous studies due to 
their good performance in discriminating clear 
ice surfaces from the rest of the earth's features 
(Paul et al., 2016). The Normalized Difference 
Snow Index (NDSI) was calculated by 
exploiting universally accepted visible and 
SWIR bands (Hall and Riggs, 2011) using 
raster calculation based on the equations (1 & 
2). However, NDSI is less favorable than the 
simple band ratio.

th  where            is Simple Band Ratio of m
thand n  band for of OLI for the pixel location 

(i,j),         and          is   ToA  reflectance  of 
respective bands.

 where                is Normalize Differential 
Snow Index of pixel location (i,j) for  OLI,  
ToA  reflectance  of   visible band and             is 
ToA of Short-Wave Infrared band. 

3.4.  Topography Extraction

 The Digital Elevation Model is the most 
common dataset to extract the glacier 
topography. Among several elevation models, 
SRTM DEM has a significantly high 
performance in extracting correct elevations in 
different altitude regimes (Tobias et al., 2005). 
Slope information extracted from DEM is 
usually exploited for the observation of clear 
ice of glacier surfaces (Linghong et al., 2016). 
Slope and elevation information extracted 
through spatial analysis from commonly used 
SRTM DEM with an absolute vertical accuracy 
of ±16 m and a horizontal positional accuracy



09

of about ±20m (Rabus et al., 2003).

3.5.  Training and Feature Classes

 Training classes were created through the 
utilization of threshold values, taking 
advantage of ground control points (GCPs). 
Meanwhile, the RF classifier was employed, 
with a training class and feature class serving as 
inputs. The resultant output of RF predicted 
classification consisted of two classes (clear ice 
and non-glaciated surface). In the final stage of 
this step, the area percent difference was 
computed by comparing the extracted area 
from the data of historical inventories and the 
predicted area calculated through RF analysis. 
The last step in the framework is an illustration 
of the current extent for clear ice and area 
difference percentage for change analysis. This 
gives the understanding of glacier stability; 
however,  accuracy assessment,  as an 
intermediate step, is carried out prior to 
providing the final output of the study. 

3.6. Selection of Training and Feature Classes 

 BRs as training class of RF classifier 
require minimum threshold values. These 
minimum threshold values were determined 
through statistics of percentile analysis (Aczel 
and Sounderpandian, 2017) of 1233 GCPs 
placed over a clear ice surface. In the context of 
the RF classifier, feature classes also refer to the 
sets of input variables. Therefore, seven 
spectral bands of OLI, spectral indices 
(NDSIs), rest of BRs, and topographic 
parameter (slope, elevation, and aspect) are 
used as feature classes for RF to learn and 
predict the clear ice surface accordingly. BRs 
and NDSIs were calculated using expressions 
(1) and (2), respectively based on OLI data and 
the topographic parameters extracted from 
SRTM. 

3.7.  Random Forest Classification

 The study focused on extracting clear ice 
surfaces of the mountainous glaciated region 
using RF classifier. RF, as a machine learning 
algorithm generates binary trees for the training 
classifier and thereafter votes for the popular 
class through aggregation (Breiman, 2001). 
Training samples and features class are the 

main ingredients of RF, while the decision tree 
is constructed from the input (Ali et al., 2012). 
Zhang et al. (2019) provided a general 
framework of RF classifier. In this study, RF 
classifier has been applied using supervised 
classification in the SNAP tool environment 
(Onojeghuo et al., 2018). The classifier was 
trained on raster data with a training sample set 
limited to the default value of 5000. An iteration 
of 10 decision trees was used for the minimum 
error of classification. In this process, the 
minimum value for raster training class was 
fixed based on the extracted values obtained 
through percentile analysis. In the final stage of 
RF construction, selected features, as described 
above were used along with training samples. 
The output of the process provided the classes 
whereas root means square error (RMSE) 
parameter was used as an evaluator to measure 
the training class (Guan et al., 2012a).

3.8.  Accuracy Assessment

 The accuracy of results derived with 
remotely sensed data is usually calculated in 
terms of the producer's, user's accuracy, and 
overall accuracy, and these parameters are 
examined through the confusion matrix (Shao 
and Wu, 2008). Hence, results for clear ice 
delineation extracted using RF classifier in the 
study were evaluated using these parameters, 
and the Kappa coefficient was also used as a 
parameter of accuracy assessment, calculated 
as in Equation (3) (Congalton, 2001).

 where r is the number of rows in the error 
matrix, x  is the number of observations in row i ii

and column i, x  and x  are the marginal totals i+ i+

of row i and column i, respectively, and N is the 
total number of observations.

4.  Results 

4.1.  RF Classification Results

 At the first stage of RF classification, 
stability analysis was carried out for every 
training class as shown in Figure 4. For every 
individual training class, four aspects of feature 
classes: spectral features (07), spectral indices
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(02), all other BRs (07), and topography (slope 
& elevation) captured as selected feature. The 
stability of RF is demonstrated by Root Mean 
Square Error (RMSE), and minimum stable 
RMSE appears after 10 trees for each training 
class. Whereas the range varies from 0.4 to 0.2, 
and the minimum value of 0.29 is noted for the 
          The feature ranking is also displayed in 
Figure 4, which demonstrates the importance of 
a feature for the training class (Guan et al., 

2012b). According to ranking profile, all the 
selected features have different behavior for 
different training classes; however, the ranking 
of NDSI seems to be consistent for all the 
training classes which induce the importance of 
snow indices for the application of RF and 
confirms that the clear ice extraction primarily 
relies on NDSI (Bajracharya and Shrestha, 
2011).



Fig. 4. Stability analysis of RMSE for RF classification and ranking of feature classes for              as training 
class where BR is band ration of m and n band of OLI for the pixel location i,j 
                                                                                     Figure 5a shows spatial distribution of clear ice over 
the glaciated region of the Hunza basin for all the training classes, continuous pattern of snow and ice visible 
in the higher elevations of the study area which shows an agreement with Hewitt (2005). However, the 
terminal end of clear ice has variation as compared to the previous inventories for some of the glaciers, as 
shown in Figure 5b, and it is due to the variation in the snow coverage as reported by Minora et al. (2016). Still 
there are some misclassified areas for each of RF results which needed to be removed manually. Figure 5c 
shows an area of clear ice predicted through RF using a different combination of BR and area difference 
percentage from the previous inventory for the year 2000 ± 2 years, which varies from 2% to 10% and 
indicates the stability in glaciers of the basin (Bolch et al., 2017).

4.2.  Glaciers Change Assessment

 Final results were obtained by mapping 
the spatial distribution of predicted results with 
clear ice distribution presented for years from 
1998-2002 by Mölg et al. (2018a) and it is 
observed that during last two decades i.e. from 
2000 to 2018 the overall clear ice glacial extent 
has not faced a significant decline as presented 
in Figure 5c and area difference percentage 
varies (i.e. 0-10%) which is in contrast to the 
results provided by Hewitt (2005). However, 
the outcome of change assessment for 27 
renowned glaciers having (area > 5.0 km2 have 
slightly different scenarios as compared to 
overall ice surface decline. Figure 6 shows the 

change assessment for the glaciers regarding 
area predicted using different BRs. It is 
interestingly noted that the glacier with small 
areas has observed a positive area difference 
percentage as compared to the glacier with a 
large extent of clear ice. This prediction 
supports one of the findings of the study by 
Hewitt (2005). Apart from the findings for the 
stability of overall glaciers, the terminal end of 
clear ice has significant variations, if compared 
with the previously developed inventories of 
years 1998 to 2000 and 2003 to 2008 as 
presented in Figure 7 which highly supports the 
vulnerability of glacier extents in the lower 
elevations in the basin (Khan et al., 2018).
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Fig. 5. Primary results of RF Classifier (a) Spatial distribution of clear ice (b) Example of variation in 
Terminal End of clear ice (c) Area difference percentage of BR and inventory of -2000+
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Fig. 6. Corresponding Area Difference Percentage of predicted clear ice surface with 
area predicted for years 1998 to 2002 by Moleg (2018).
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4.3.  Accuracy Assessment

 Accuracy of each BR to extract clear ice 
by exploiting RF classifier was estimated using 
the 402 selected reference samples. The sample 
points are then characterized in confusion 
matrix as given in Table 3 to summarize the 
accuracy of the results.  From the list of the BR 
in Overall accuracy for all the bands lies 

between 82% and 83% with Kappa values 
ranging from 0.64 to 0.65 when used as training 
class in RF classifier. While the user's accuracy 
for all BRs ranged from 81%to 83% is less than 
that of producer's accuracy ranging from 83% 
to 87%.      exhibits maximum producer's 
accuracy of 87% in contrast to the accuracy of 
83 % for, 

Fig. 7. Example of some glaciers with variation in clear ice terminus. (a) Khurdopin Glacier 
(b) Mulungutti Glacier (c) Yazgil Glacier (d) Virjerab Glacier (e) Pasu Glacier (f) Barpu Glacier
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Table 3: Confusion Matrix Results for the classification of clear ice (Class-1) and non-glaciated surface 
(Class-2) using Band Ratio as raster training dataset for OLI Images to extract clear ice surface in Hunza 
sub basin

5.  Discussion

 The stability of mountain glaciers is 
expressed as an indicator of climate change and 
its varying effects on the global climate 
(Haeberli et al., 2007). The general trend 
indicates a retreat in glaciers on a global scale 
(Zemp et al., 2015), whereas many of studies 
highlight heterogenous trend in glaciers of 
Karakoram range (Gardelle et al., 2012). This 
study builds on existing research to quantify the 
clear ice extent using ML approach by 
leveraging the RF classification algorithm. The 
study aims to overcome the limitations of 
traditional methods and provide more reliable 
glacier stability statistics. However, the 
challenge of required number of samples to 
train the model affects the accuracy of the 
model. The results contribute to the ongoing 
discussion about the unique behavior of 
Karakoram glaciers and provide an updated 
inventory reflecting their condition in 2018.

5.1.  Ice Extend Stability of Glaciers

 OLI data serves as the foundation dataset 
for the study, which focuses on extracting the 
clear ice extent of Karakoram glaciers using an 
advanced machine learning (ML) classification 

technique. The OLI Data has also been utilized 
by several other glacier studies. In contrast to 
the current study, which uses chosen glaciers 
over 2000 meters above sea level, Rastner et al. 
(2017) used OLI (Level 1T) data in the Russian 
Artic region, which is characterized by small 
valley glaciers in an elevation range of 
1300–1600 meters above sea level. Li et al. 
(2023) conducted a study on the glaciers of 
Karakoram using images from SPOT, which 
has a 60 km x 60 km scene coverage area 
constraint. When compared to OLI images, 
such a data source is not favorable across a large 
area extent (Franklin et al., 2011). The findings 
in this study shed light on the stability of these 
high glaciers of Karakoram during the previous 
ten years and help to measure their current clear 
ice extent. Although it is widely acknowledged 
that glaciers are receding globally, pertinent 
research suggests that the glaciers in the 
Karakoram range have exhibited a degree of 
relative stability (Li et al., 2023). According to 
this study's findings, which are consistent with 
earlier research of Minora et al. (2016), the area 
difference percentages for small and large 
glaciers are positive and insignificant, 
respectively, ranging from 0 to 10% (over a ten-
year period).
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5.2.  Accuracy of Random Forest

 The study utilizes the Random Forest 
(RF) classification algorithm to address the 
limitations of the simple band ratio method 
commonly used for ice surface extraction in 
glaciated areas (Zhang et al., 2019). A unique 
approach in this study is training the classifier 
on raster data of the desired band ratio with the 
threshold value. This contrasts with the more 
common practice of using vector data for 
classifier training by Khan et al. (2020), 
Talukdar et al. (2020) and others. By employing 
raster data, the study avoids the labor-intensive 
task of labeling training data. The accuracy 
assessment is explained with the reference of 
most popular metrics i.e. overall accuracy and 
kappa coefficient however, rest of the accuracy 
parameters are also recorded. Whereas most 
studies like, Thanh Noi and Kappas (2017) and 
Lu et al. (2020) stick with only few parameters 
for explanation of accuracy assessment. 
Further, the algorithm's learning ability in this 
study capping the maximum overall accuracy at 
83% is generally acceptable to validate the 
results (Ismail and Jusoff, 2008). The achieved 
accuracy in this study is lower than that of some 
other glacier-related studies (Zhang et al., 
2019) which is because the limitations of the 
study. Foremost limitation is setting the training 
sample size to a default value of 5000 pixels 
which presented a significant impact. 
Furthermore, machine learning is the 
sensitivity to seasonal and atmospheric 
variations, such as cloud cover and snow 
whereas, present study processed 12 scenes 
(table 2) and found only 5 scenes with less 30 
percent  cloud cover/ Despite these limitation, 
the study significantly provides an updated 
inventory of Karakoram glaciers with a 
timestamp of 2018, contributing valuable data 
to the existing referenced glacier inventories 
established by Bajracharya and Shrestha 
(2011), Mölg et al. (2018a) and Minora et al. 
(2016).

6.  Conclusion

 This study has explored the extraction of 
clear ice extent in most heterogenous glaciated 
sub-basin of Hunza in UIB of HKH to discuss 
the stability of glaciers in the basin. The 
improved mountain glacier monitoring ability 

of Landsat-8 with its 12-bit quantized 
multispectral data has been utilized, and the 
dataset has been pre-processed through GEE. 
RF classifier as a machine learning technique 
for automatic extraction of clear ice has been 
exploited by considering BRs and topographic 
information from Landsat-8 OLI and STRM 
DEM data ,  respect ive ly.  The  resul t s 
demonstrated that the extraction of clear ice has 
an acceptable overall accuracy and kappa 
coefficient, whereas the area difference 
percentage between predicted results and 
previous glacier inventories for clear ice 
surface is presented for different combinations 
of BRs. The results indicate that glacier ice is 
the basin has not significantly changed overall 
for the last 20 years, differences are, however, 
observed in 28 renowned glaciers (area > 5.0 
km2), confirming higher variation in some of 
the specific glaciers in the area. The most 
interesting outcome of the results is that the 
change in clear ice extent is inversely 
proportional to the area of the glaciers, which 
means that the smaller glacier has much more 
variations as compared to the bigger glaciers. 
However, the change in the position of the 
terminal end of clear ice in most of the glaciers 
verifies the decline of clear ice in lower 
elevations, which is a common phenomenon in 
the basin. Furthermore, variations in the 
predicted area through different BRs also 
confirm the role of selected bands for band 
ratios, and in this connection, visible (band2) 
and SWIR wavelengths show the stability of 
glaciers with minimized variation, i.e., 0.3 % of 
the area difference percentage. The accuracy of 
classification results lies in between 82% and 
83% for BRs with a kappa value of 0.5 to 0.6, 
showing slightly different behaviors of BRs to 
classify clear ice extent. However, the lower 
user accuracy (80%) in comparison of its 
producer accuracy (86%) justifies the least 
contribution of the NIR bands for the 
classification.
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