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Abstract

Customary co-seismic landslide detection methods are meticulous, time demanding and very difficult to be 
adopted for regional-scale assessment.  To provide on time fast and updated slope failure information, over 
the years numerous remote sensing based semi-automatic landslide detection methods have been developed 
and applied. However, implementation of these techniques requires some vital considerations like accurate 
and precise geometric correction, resampling and false positives elimination. To address these issues a new 
change-detection based technique of COSI-Corr (Co-registration of Optically Sensed Images and 
Correlation) has been adopted for mapping co-seismic landslides in Muzaffarabad area. However, due to 
COSI-Corr high sensitivity for detecting changes on the sub-pixel level, it is prone to detecting changes 
caused by vegetation, erosion and variation in built-up area size as false positive values. In this study, the 
influence of various factors like vegetation, sedimentation, erosion and built-up areas on landslides automatic 
detection results accuracy has been investigated. After the implementation of COSI-Corr technique, stepwise 
masking is performed. The false positives are successively removed from the landslide class by eliminating 
the noises resulting from drainage, urban sprawl and vegetation phonology. The results accuracy was 
increased after the application of each mask. The number of false positives was greatly reduced by the 
application of the vegetation-based mask. The best threshold found was 0.1 for which error of omission and 
error of commission was less than 11%. The results also showed that satellite images with medium spatial 
resolution could be successfully employed for the automatic detection of co-seismic landslides.

Keywords:   COSI-Corr, Co-seismic landslides, False positives, Automatic technique.

1.  Introduction       
    
 Customary co-seismic landslide detection 
methods are conscientious, time demanding 
and very difficult to be adopted for regional 
scale landslides assessment.  To provide on 
time fast and updated slope failure information 
over the years numerous Remote Sensing (RS) 
based semi-automatic methods have been 
developed and applied. RS based techniques 
offer on time disaster responses over regional 
scale, especially for hard-hit and difficult-to-
access areas (Vu et al., 2005). These techniques 
include pixel-based (Delacourt et al., 2004; 
Keyport et al., 2018; Moosavi et al., 2014; 
Sibaruddin et al., 2018), object-based (Aghighi 
et al., 2015; Barlow et al., 2006; Casagli et al., 
2016; Ling et al., 2008; Martha et al., 2010; 
Martin and Franklin, 2005; N. Keyport et al., 
2018) and sub-pixel based techniques (Mertens 
et al., 2008; Thornton et al., 2006).

 T h e  m a i n  p r o b l e m  i n  l a n d s l i d e 
identification while using RS based semi-
automatic techniques is mainly limited by the 
spatial resolution of the sensor.  Landslides, as 
compare to other geographic objects, are 
comparatively trivial in size. Therefore, most of 
the times changes in landslides or failing slopes 
appear to be on the sub-pixel level, making it 
tough for pixel-based and object-based 
techniques to be successfully detected  
(Delacourt et al., 2004; Yamaguchi et al., 2003). 
On the other hand, most of the landslide 
detection methods based on images comparison 
are frequently applied by using high-resolution 
imagery (Feizizadeh et al., 2017; Lee and Lee, 
2006; Mondini et al., 2011; Nichol and Wong, 
2005; Tsai et al., 2010; Weirich and Blesius, 
2007). In this kind of analysis, high cost and 
pre-and post-event requirement of very high-
resolution data (Mondini et al., 2011), makes it 
impossible to be adopted on a regional scale. 
Therefore, constant exertion is essential to
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expand the mentioned techniques for effective 
landslide detection (Debella-Gilo and Kääb, 
2011).

 Implementation of RS based techniques 
require some vigorous considerations like 
accurate and precise geometric correction on 
the sub-pixel level, resampling and effective 
false positives elimination.  Furthermore, in 
change detection-based RS techniques it is of 
high importance that the image information 
from the raw remotely sensed satellite images 
should be sufficiently aligned and registered on 
the sub-pixel level before the correlation 
processes. However, the more we focus into 
detecting geographic entities and its changes on 
sub-pixel level, more challenges are confronted 
related to preservation of sub-pixel information 
during resampling (Inglada et al., 2007; Keren, 
1988; Kim et al., 1990; Yamaguchi et al., 2003), 
correct ortho-rectification and co-registration 
(Bryant et al., 2003; Saba et al., 2017; 
Townshend et al., 1992). 

 To address these issues for correct co-
seismic landslides mapping a new change-
detection based technique of COSI-Corr has 
been successfully developed and adopted in the 
Haiti area after the 2010 earthquake(Saba et al., 
2017). Although, COSI-Corr performed well in 
term of co-seismic landslides detecting in Haiti 
while using an ideal very high-resolution 
worldview-2 dataset. The main challenge was 
to test its transferability and robustness in a 
rough topographic area of Muzaffarabad for co-
seismic landslides detection using a medium 
resolution ASTER dataset. Owing to COSI-
Corr high sensitivity for detecting changes on 
the sub-pixel level, it is considered vulnerable 
to detecting many changes caused by 
vegetation, erosion and variation in a built-up 
area as false positive values (Saba et al., 2017). 
Therefore, this study focuses on the influence 
o f  v a r i o u s  f a c t o r s  l i k e  v e g e t a t i o n , 
sedimentation, erosion and built-up areas on 
landslides automatic detection accuracy 
through COSI-Corr, while using medium 
resolution data has been investigated.

2. Study area

 The study area, Muzaffarabad is located in 
the north of Pakistan. This region is recognized 
for its dynamic seismic-tectonic activities 

(Kazmi and Jan, 1997; Zaré et al., 2009). It is 
tectonically an active part of the Lesser and 
Sub-Himalayan belt that is located in the core 
and limbs of the Hazara-Kashmir Syntaxis 
(Bossart et al., 1988; Calkins et al., 1975) and at 
the junction of the northwest Himalayas of 
northern Pakistan (Fig. 1). Therefore, structure 
plays a key role in the preparation of landslides 
in the selected study area (Kaneda et al., 2008). 
An active tectonic Balakot-Bagh Faultline 
passes through the middle of the Muzaffarabad 
area (Kazmi and Jan, 1997). Topographically 
majority of the study area is mountainous and 
surrounded by steep slopes (Saba et al., 2010). 
Geology of the study area is comprising of 
various formations composed of sandstone, 
limestone, shale, alluvium and siltstone.  
Colluvium and alluvium deposits are sited at 
the slopes bottom and drainage lines. A major 
earthquake with moment magnitude Mw = 7.6 
hit the study area in 2005, prompting a seventy-
kilometer long rupture along  Balakot-Bagh 
Faultline (Avouac et al., 2006; Kaneda et al., 
2008). The 2005 earthquake not only triggered 
hundreds of landslides but it also destabilized 
the surrounding slopes (Jayangondaperumal 
and Thakur, 2008; Saba et al., 2010) by creating 
fissures, crack and crumbling rubble along the 
Faultline.

 Local geological structures have great 
influence in shaping local drainage pattern in 
the area (Kamp et al., 2008). Drainage density 
and slopes closeness to drainage structures is 
also associated to the erosional activity at slope 
bottoms in valleys consequently making areas 
destabilized that causes slope failures 
( G o k c e o g l u  a n d  A k s o y ,  1 9 9 6 ; 
Jayangondaperumal and Thakur, 2008; Yalcin, 
2008). 

3. Input data and processing
 
 The methodology process is systematized 
into two groups of tasks. The first group of tasks 
(section 3.2 and 3.3) includes ortho-
rectification, co-registration and correlation of 
optical ASTER imagery, with the software, 
COSI-Corr explained by Leprince et al., (2008) 
and Saba et al., (2017). The second group of 
tasks (section 3.4) comprises noise removal or 
data masking and evaluating the role of various 
factors causing noise in the results. 
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3.1. Imagery and Digital Elevation Model 
(DEM)

 In this study we used pre- and post-event 
ASTER level 1A imagery (Table.4.1) with a 
time span of four years, obtained for November 
14, 2001, and October 27, 2005. These images 
were cloud-free ASTER scenes. Additional 
pre-and post-event IKONOS and Quickbird 
images were used for ground control points 
(GCPs) collection and validation dataset 
preparation (Saba et al., 2010). The method of 
automated stereo correlation (Hirano et al., 
2003) was used to produce 15 m resolution 
DEM with the maximum possible level of 
detail (Table.1). The gaps were filled by the 
interpolation process.  DEM accuracy was 
checked against GPS points. Drainage pattern 
was extracted, which were later on used for 
further analysis while distinguishing landslides 
from the other displacement values.

3.2. Ortho-rectification/Resampling 

 For the ortho-rectification of pre-
earthquake raw ASTER L1A VNIR image, 20 
well spread tie points, located on stable 
features, away from the deformation zone and 
image corners were selected from an already 

ortho-rectified IKONOS imagery. The selected 
tie points were optimized by using optimization 
function with five iterations in COSI-Corr, to 
confirm accurate co-registration between 
IKONOS and ASTER images.  The list of tie 
points was then converted to GCPs. The GCPs 
with high residual error were eradicated. The 
pre-earthquake image was then ortho-rectified 
and resampled with the calculated GCPs and 
pre-earthquake DEM. The same procedure was 
followed for the ortho-rectification of post-
event image except for this time the rational 
polynomial coefficients (RPCs) were selected 
from the pre-event imagery. According to 
Leprince et al.   , the ideal resampling method 
sine cardinal (Sinc) was followed for the 
resampling of both images. The images were 
then co-registered with a 1/50 of pixel accuracy 
using Cosi-Corr software  , which mean the 
m i n i m u m  a c h i e v a b l e  a c c u r a c y  f o r 
displacement measurement was 1/20 of a pixel 
(75cm for ASTER 15m). To assume the 
topography unchanged (as the technique 
undertakes the unchanged topography 
throughout the process) before and after the 
landslide occurrence both the images were 
ortho-rectified with only the pre-event ASTER 
DEM.

Fig. 1. The relative and absolute location of the study area map.
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3.3. Sub-pixel correlation of ASTER optical 
images 

 The images were orthorectified, co-
registered and aligned to their on-ground seeing 
geometry. Relative offset values were 
calculated among both pre- and post-
earthquake satellite images. In this method, the 
correlation is done in dualistic phases. First, it is 
performed on the supera-pixel scale in which 
the change among the satellite pre- and post-
event images from their associating matrix is 
extracted taken out. In the second phase, the 
extracted shift for each pixel is adapted by 
rounding up the slope variance of both the 
images by Fourier conversion (Ayoub et al., 
2009). The initial window size was set to 32 and 
the final window size to 4. The step size was 
kept below the initial window size (at 2). To 
eliminate any possible outliers, the masking 
threshold (signal to noise ratio) was kept 
constant at 0.90. The final correlation was 
assessed by measuring horizontal shift 
components that happened in all four directions 
of east, west, north and south. To evaluate the 
accuracy of outcomes, a separate layer of the 
signal to noise ratio was also automatically 
computed with the correlation, as defined in 
Leprience et al. (2007). As in this study, we 
were interested into full displacement of each 
pixel irrespective of any special direction (east, 

west, north or south), therefore vectors were 
calculated by combining the displacement in all 
four aspect directions.

3.4. Isolation of co-seismic landslide by 
excluding the following masks 

 After the application of Cosi-Corr, 
developed and modified for landslide 
identification by Saba et al, (2017), the 
systematic masking was performed to eliminate 
the high displacement values caused by 
manmade (construction etc.) and natural 
activities (erosion, sediment deposition on both 
sides of streams, deformation due to seismic 
effects etc.). These masks include drainage 
lines mask, plane area mask (i.e., very gentle 
slopes and flat terrain) and NDVI mask 
(separating vegetated and non-vegetated 
areas). 
 
3.4.1. Preparation and execution of drainage 
mask
The high density of false positive values was 
observed along the banks of rivers and 
streamlines. Problems due to false positive 
values in these cases were addressed by 
subtracting the main drainage lines from the 
correlation image. The mask was generated by 
manual digitization of main drainage lines from 
IKONOS image. 

Table 1. Presents  spatial  and  temporal  characteristics  of  the  data used in this study, along with 
             details on the acquisition parameters.
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3.4.2. Plane area mask construction

 As a slope failure is referred as the 
alteration of a mass of rock, earth or debris 
down a slope (Cruden, 1991), therefore, the 
main distinguishing characteristic of false 
positives values caused by any other feature 
rather than landslide from the true positives was 
their presence on plane areas. A mask of the 
plane and the non-plane area was generated 
from the ASTER DEM by using internal relief 
variation filters in ILWIS software (Nijmeijer et 
al., 2001).  If the internal relief of the adjacent 
pixels was less than 10m within 5*5-pixel 
window (75m*75m area) then it was classified 
as plane otherwise un-plane area.

3.4.3. Preparation and execution of vegetation 
by NDVI mask

 In the present study post-event, NDVI was 
used as a mask of vegetation and non-
vegetation areas to eliminate vegetation change 
effects.  Typically, vegetation has NDVI values 
in the range from 0.1 to 0.7 (Roettger, 2007). 
Therefore, the threshold of NDVI greater than 
0.1 was applied to separate vegetated from non-
vegetated areas. The accuracy of the threshold 
was also tested by overlaying the binary image 
on the IKONOS imagery of the area available 
for the same date. 

3.5. Accuracy improvement and quality 
assessment

 To assess the quality of measurements 
after image classification and the application of 
each mask, accuracy assessment was done for 
each threshold level (fourteen threshold values) 
of the map. It was implemented in the form of 
standard error matrices that compares image 
classification result with ground truth data 
(Congalton, 1991; Czaplewski and Catts, 1992; 
van Oort, 2007). 

 To further evaluate the results and validity 
of classification the following derivatives from 
the error matrix were calculated. 

 Producer's accuracy was calculated by 
using a number of correctly classified pixels 
(e.g. landslides) to the total number of pixels 
assigned to that category by the ground truth 

data. It is a measure of error of omission, that 
occurred when pixels should have been 
incorporated into the category of “landslide”, 
but were included into “no landslide” category 
by the classification. In other words, the pixels 
were omitted from the particular class.

 User's accuracy was measured by using 
the number of correctly classified pixels to the 
overall number of pixels allocated to a specific 
category by the classification map. It is a 
measure of the commission error. Commission 
error occurred when pixels other than 
landslides were incorporated into category 
“landslides” or simply; the pixels were 
assigned to the wrong class (Jensen, 2005).  

 The overall accuracy was determined by 
summing all the correctly identified pixels and 
dividing it by the sum of all incorrect 
observation (Jensen, 2005).

 Sensitivity is the fraction of positive 
pixels correctly predicted and “1-specificity” 
representing the probabilities of committing or 
an error of commission (false positive).

 Specificity is the fraction of negative 
pixels correctly predicted and “1-sensitivity” 
represent the probabilities of committing an 
error of omission (false negative) (i.e., the 
probability that a pixel not belonging to a 
particular category is correctly identified.

 The receiver operating characteristic 
curve (ROC curve) plots the rate of true positive 
to positive classifications against the rate of 
false positive to negative classifications. 

4. Results and discussion

 The results were classified into the slide 
and no-slide classes using various threshold 
values, as all image algebra change detection 
algorithms need a suitable threshold selection 
to identify landslides. The position of the 
threshold can greatly affect the final accuracy 
(Fung and LeDrew, 1988). Therefore, we 
calculated accuracies for 14 different 
thresholds (displacement value ≥ threshold 
=“change”), starting from the minimum 
displacement value to the maximum (Fig. 2). To 
have a better understanding of the relationship
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Fig. 2. The curve shows, user accuracy versus producer accuracy on the primary
           axis and error of omission versus error of commission on a secondary 
           axis for fourteen different threshold values.

among the producer's accuracy, user's accuracy, 
the error of omission and error of commission 
for each threshold level of the results, we 
plotted all these values against each other on the 
same plot (Fig. 2).  This also demonstrates the 
relationship between the threshold variation 
and its effect on the variation of prediction 
accuracies. At threshold zero almost all 
occurred  changes  were  c lass i f ied  as 
“landslides” and all those points which did not 
change were classified as “no landslides”. The 
threshold value (0.1) had a large disparity 
between producer's (97%) and user's (11%) 
accuracy. This means that 97 percent of 
landslides are correctly identified but only 11% 
of the area that is classified as “landslides” is 
truly landslide. 

 Producer's accuracy is affected by errors 
of omission and it reflects the reference field's 
omission. Conversely, user's accuracy is 
influenced by errors of commission and it 
reflects when classified samples are wrongly 
included. 

 It is also visible that the error of Omission 
is low for the first three thresholds (< 20%) but 
the error of Commission is greater than 80%. 

This indicates the presence of high confusion 
which has been caused by a large number of 
false positives and false negatives present in the 
results. It also represents that during the time 
period 2001 to 2005, many pixels were shifted 
causing high noise even though these pixels 
were not landslides. In practice, for reducing 
noise, caused by attitude (roll, pitch, and yaw) 
artefacts undulating observing platform, the 
correlation results are de-striped (Ayoub et al., 
2008; Necsoiu et al., 2009; Scherler et al., 2008; 
Teshima and Iwasaki, 2008).  However, in this 
case study, de-striping was actually reducing 
the accuracy of landslide detection. This 
indicated that false positives were not produced 
due to positional errors or platform undulations. 
Regardless of the fact that both the pre- and 
post-event image acquisition dates were 
selected from the same season (October and 
November) to minimize spectral differences, 
between the two images; other changes (mostly 
temporal) i.e. phenology, cloud cover, sun 
angle and shading directly or indirectly), 
introduced high complexity in differentiating 
landslides from other changed features (Jensen, 
2005). 
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Fig. 3. It shows the correlation results with many noisy patches (changes other than landslides) caused by new 
           constructions, vegetation  changes, and  river  banks  erosion  and  deposition.  The  details of  landslide 
           inventory for this area can be found in (Saba et al., 2010).

 In order to distinguish displacements 
caused due to landslides and other changes, it 
will be good to select displacement threshold 
with high producer accuracy and develop rule-
set or series of masks for characterizing 
landslides; and then implement them on the 
correlation results. To do so, we investigated 
the false positive showing high displacement 
values by comparing the high-resolution 
IKONOS and Quick Bird pre- and post-event 
images. From the interpretation, it was 
identified that factors like vegetation change, 
topographic shadows, erosion, deposition 
along the drainage lines and urban sprawl were 
influencing the results.  An attempt was made 
to reduce the number of these false positives by 
applying a series of different masks. The 
images were reclassified into binary maps of 
change (landslide) and no change (no 
landslide). The accuracy of the reclassified 
result has been assessed by creating ROC 
curves. The results have been discussed 

independently in the following paragraphs after 
the application of each mask. 

4.1. Role of drainage lines 

 First, the main reason for noise or false 
positive values in and along the drainage lines 
(streams, river banks and meanders) were 
inundation and sedimentation by streams and 
rivers. This was predominantly visible along 
the meandering sides of the river Neelum and 
some narrow stream valleys of Khata Shawai 
(Fig. 3). Secondly, when approaching towards 
the landslide toe area along the streamlines, the 
displacement values are inclined to increase, 
causing the valley bottom pixels to attain the 
highest displacement values which are 
consistent in narrow stream valleys throughout 
the study area (Fig. 3). The north-south and 
east-west  components  of  the surface 
displacement field in these narrow valleys 
indicated a maximum displacement.
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 After the introduction of the drainage 
mask, false positive values have been decreased 
(Fig. 4).  For example, at threshold value 0.1, 
the false positive rate for landslides has been 
decreased from 0.93 to 0.87, which is a 
decrease of 6% error of commission. While for 
the same threshold, the true positive rate 
remained almost unchanged with only 0.01 
decrease. The decrease in true positive rate is 
caused by the removal of valleys bottoms along 
the streamlines, which also eliminated a few 
pixels that were parts of depositional bodies of 
landslides. The same increase and decrease 
trend can be noticed for other threshold values 
as well (Fig. 4). Generally, the true positive rate 
for each threshold increased following the 
drainage mask application. 

4.2. Plane area mask

 Some false positives were identified in the 
correlation images due to several natural and 
man-made changes in urban areas (i.e., new 
built-up areas, roads pavements, erosion, 
terracing ground deformation and subsidence, 
etc.) either located on very gentle slopes or flat 
terrain. These were eliminated by masking the 
plane areas (Fig. 5) from the results. After the 
application of the plane area mask to the 
correlation results the true positive rate 
(sensitivity) at threshold value 0.1 remained the 
same but false positive rate decreased from 0.85 
to 0.74, a total of 0.11 (11%) decreases.  
Elimination of newly constructed buildings on 
slope areas of southern Muzaffarabad in this 
period (2001 to 2005) is still difficult to be 
masked completely with the use of plan area 
mask. This mask could be further improved by 
creating a built-up area mask and plane area 
mask separately.

4.3. Role of vegetation change

 Spat ia l  and temporal  changes in 
vegetation over time create significant 
variation, therefore those areas where 
vegetation changes had occurred were detected 
as changed patches and ultimately as 
landslides. In the past, NDVI has been 
effectively adopted to differentiate landslides 
from other changes (Barlow et al., 2006; 
Schneevoigt et al., 2008).  Therefore, in this 
study, an effort has been made to solve the 
problem of false positives caused by vegetation 

changes by masking the areas with vegetation 
or eliminating areas having NDVI value greater 
than 0.1. 

 After the application of the NDVI masks, 
false positive rate (1-specificity) greatly 
decreased from 0.74 to 0.9 (Fig. 4). However, at 
the same time sensitivity also decreased from 
0.96 to 0.89.4 (89 %). Now for threshold 0.1, 
the sensitivity was 0.89, corresponding to only 
10.6% probability of an omission error. 
According to Mather (2004), NDVI also 
compensates for topography induced variation 
in scene brightness, which is one of the main 
reasons for the great decrease of false positive 
rate (1-specificity). Therefore, it reduced the 
false positive values caused by vegetation 
variation due to topographic shadowing 
differences as well. At the same time, many 
landslides located in steep slopes shadows were 
also eliminated causing the decrease in the 
sensitivity of the map and increase in the error 
of commission. Another reason which caused 
the decrease in sensitivity is that even after the 
failure of slopes, few landslide bodies were 
intact and were having traces of vegetation. By 
applying the NDVI mask (areas having NDVI 
value >0.1), we also deleted those areas which 
were actually vegetated landslides. Even then 
the improvement in the elimination of false 
positives was so high that 1-specificity or false 
positive rate has decreased from 0.74 to 0.9 
(Fig. 4).

 Overall by plotting the ROC curve after 
the application of each mask with respect to all 
threshold levels, we can see a continuous 
improvement in the results (Fig. 4). These 
curves are getting higher after the application of 
each mask which shows the model is 
performing better regardless of what threshold 
is used. Comparison of ROC curves also 
illustrates that the false positive rate has 
decreased after the application of each mask; 
nevertheless, the highest decrease was 
witnessed after the application of NDVI mask. 
This indicates that the highest source of 
commission error was from forest or vegetation 
change in the study area. Selecting a suitable 
threshold to separate landslide from no 
landslide requires a compromise between 
sensitivity and specificity, as both cannot be 
maximized concurrently. Therefore, after the 
application of NDVI mask, if we want to select
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an optimal threshold, it will be 0.1 for which 
both the error of omission and error of 
commission are reduced to less than 18% (Fig. 
4). 

 The classification results for the selected 
threshold 0.1, eliminated most of the noise 
caused by vegetation changes, shadow effects, 

sedimentation,  and erosion along the 
streamlines, river banks and built-up areas (Fig. 
6).  Despite the fact that the landslide 
identification through sub-pixel correlation 
method results in the noisy performance by 
showing many changes caused by other factors, 
it has still performed better than the previous 
landslide identification techniques. 

Fig. 4. Relative Operating Characteristic (ROC) curves show the rate of true positives versus 
false positives for the pure correlation results (no mask) and after the application of each 
mask, respectively for all the fourteen scenarios or threshold values. All of the curves 
achieved an increase in the area under the ROC curve after the application of each mask.  

Fig. 5. Top-left shows the correlation results before any mask was applied. The remaining three show the 
results after the application of each mask, drainage, plain and NDVI, respectively.
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Fig. 6. Shows the classification results for threshold 0.1, overlaid by landslide polygons 
(ground truth data).

5.  Conclusion

 This study presents a systematic approach 
by using a stepwise binary masking idea to 
enable a significant reduction in false positive 
from the correlation images, caused by several 
spatial and temporal changes. 

 Although this technique for the automatic 
detection of the landslide on sub-pixel level 
proves to be one of the best techniques, even 
then it suffers from some minor problems of 
having a high number of false positive values. 
The noise is produced by numerous factors like 
platform changing attitude through the 
scanning process, DEM errors, natural features 
(vegetation change, shadowing effects, erosion 
and sedimentation) and man-made structures 
(urbanization). These false positive values 
degrade the interpretability of the data and 
decrease the accuracy of the results. Numerous 
methods have been suggested to deal with the 
noise produced due to spatial errors (that affect 
spatial accuracy) like platform attitude 
problems (Ayoub et al., 2008; Necsoiu et al., 
2009; Scherler et al., 2008; Teshima and 

Iwasaki, 2008), DEM errors (Ayoub et al., 
2009; Scherler et al., 2008) and inaccurate 
resampling and correlation but nothing has 
been applied to remove the false positive values 
or thematic errors caused by pixel-shifts 
representing manmade and natural changes like 
urban sprawl, spatial and temporal vegetation 
changes, changes in non-perennial streams and 
inundation and sedimentation changes in the bi-
temporal images. 

 Hence, landslide automatic identification 
based on the displacement measurement 
technique from the bi-temporal imagery alone 
may not be adequate to detect landslides 
effectively. Therefore, a detection approach 
that incorporates data from other sources might 
be more effective than the one based solely 
upon the displacement measurement from bi-
temporal remote sensing images. This study 
aimed to investigate the influence of each factor 
(i.e., vegetation, sedimentation, erosion and 
built-up areas) contributing to false positives 
values and an effort has been made to reduce the 
number of these false positives by combining 
information from the normalized difference
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vegetation index (NDVI), drainage pattern and 
built-up areas. 

 The stepwise masking was performed 
after the application of Cosi-Corr technique 
(co-registration of optically sensed images and 
correlation), developed and modified for 
landslide identification by Saba et al, (2017).  
The false positives are sequentially eliminated 
from the landslide class by removing the noises 
resulting from drainage, urban sprawl and 
vegetation phonology. The false positives are 
successively removed from the landslide class 
by eliminating the noises resulting from 
drainage, urban sprawl and vegetation 
phonology. The results accuracy was increased 
after the application of each mask. The number 
of false positives were greatly reduced by the 
application of the vegetation-based mask. The 
best threshold found was 0.1 for which error of 
omission and error of commission was less than 
11%. The results also showed that medium 
spatial resolution imagery (ASTER) may well 
be utilized in an irregular topographic area like 
the Himalayas to inevitably distinguish above 
90% of slope failures. The application of this 
technique along with considerately prepared 
masks will additionally enhance the rapid 
detection of co-seismic landslides on a regional 
scale in a cost-effective way. Cosi-Corr will 
also help in evading remote sensing-based 
techniques that require intensive analysis 
involving enormous rule-sets.  Unlike OBIA 
technique, that performs well only using high-
resolution satellite images (Mondini et al., 
2011), Cosi-Corr is claimed to perform well 
while utilizing medium spatial resolution (5-
15m) satellite data Saba et al., (2017). Which 
makes it economical and possible to be adopted 
on a regional scale. 

Authors contribution

 Sumbal Bahar Saba did analysis and 
writing. Nimat Ullah Khattak did text review. 
Muhammad Al i  d id  ana lys i s  rev iew. 
Muhammad Waseem statistical analysis and 
text review. Samina Siddiqui did figures and 
tables finalization. Seema Anjum did analysis 
review. Syed Ali Turab did final review of the 
manuscript. 

References 
Aghighi, H., Trinder, J., Lim, S., Tarabalka, Y., 

2015. Fully spatially adaptive smoothing 
parameter estimation for Markov random 
field super-resolution mapping of 
remotely sensed images. International 
Journal of Remote Sensing, 36, (11), 
2851-2879.

Avouac, J.P., Ayoub, F., Leprince, S., Konca, 
O., Helmberger, D. V., 2006. The 2005, 
Mw 7.6 Kashmir earthquake: Sub-pixel 
correlation of ASTER images and seismic 
waveforms analysis. Earth and Planetary 
Science Letters, 249, (3-4), 514-528.

Ayoub, F., Leprince, S., Avouac, J.P., 2009. Co-
registration and correlation of aerial 
photographs for ground deformation 
measurements .  ISPRS Journal  of 
Photogrammetry and Remote Sensing, 
64, (6), 551-560.

Ayoub, F., Leprince, S., Binet, R., Lewis, K. W., 
Aharonson, O., Avouac, J. P., 2008. In 
Influence of camera distortions on 
satellite image registration and change 
detection applications, Geoscience and 
Remote Sensing Symposium, 2008. 
IGARSS 2008, IEEE International,  II-
1072-II-1075.

Barlow, J., Franklin, S., Martin, Y., 2006. High 
spatial resolution satellite imagery, DEM 
derivatives, and image segmentation for 
the detection of mass wasting processes. 
Photogrammetric Engineering & Remote 
Sensing, 72, (6), 687-692.

Bossart, P., Dietrich, D., Greco, A., Ottiger, R. 
Ramsay, J. G., 1988. The tectonic 
structure of the Hazara‐Kashmir syntaxis, 
southern Himalayas, Pakistan. Tectonics, 
7, (2), 273-297.

Bryant, N. Zobrist, A. Logan, T., 2003. In 
Automatic co-registration of space-based 
sensors for precision change detection and 
analysis, Geoscience and Remote Sensing 
Sympos ium,  2003 .  IGARSS '03 . 
Proceedings. 2003 IEEE International, 
1372, 1371-1373.

Calkins, J. A., Offield, T. W., Abdullah, S. K., 
Ali, S. T., 1975. Geology of the southern 
Himalaya in Hazara, Pakistan, and 
adjacent areas, 716C. 

Casagli, N., Cigna, F., Bianchini, S., Hölbling, 
D., Füreder, P., Righini, G., Del Conte, S., 
Friedl, B., Schneiderbauer, S., Iasio, C., 
Vlcko, J., Greif, V., Proske, H., Granica,



48

K., Falco, S., Lozzi, S., Mora, O., Arnaud, A., 
Novali, F., Bianchi, M., 2016. Landslide 
mapping and monitoring by using radar 
and optical remote sensing: Examples 
from the EC-FP7 project SAFER. Remote 
Sensing Applications: Society and 
Environment, 4, 92-108.

Congalton, R. G., 1991. A review of assessing 
the accuracy of classifications of remotely 
sensed data .  Remote  Sens ing of 
Environment, 37, (1), 35-46.

Cruden, D. M., 1991. A simple definition of a 
landslide. Bulletin of the International 
Association of Engineering Geology, 43, 
27-29.

Czaplewski, R. L., Catts, G. P., 1992. 
Calibration of remotely sensed proportion 
or area estimates for misclassification 
error. Remote Sensing of Environment, , 
39, (1), 29-43.

Debella-Gilo, M., Kääb, A., 2011. Sub-pixel 
precision image matching for measuring 
s u r f a c e  d i s p l a c e m e n t s  o n  m a s s 
movements using normalized cross-
co r r e l a t i on .  Remote  Sens ing  o f 
Environment, In Press, Corrected Proof.

Delacourt, C., Allemand, P., Casson, B., Vadon, 
H., 2004. Velocity field of the &#8220;La 
Clapière&#8221; landslide measured by 
the correlation of aerial and QuickBird 
satellite images. Geophys. Res. Lett., 31, 
(15), L15619.

Feizizadeh, B., Blaschke, T., Tiede, D., 
Moghaddam, M. H. R., 2017. Evaluating 
fuzzy operators of an object-based image 
analysis for detecting landslides and their 
changes. Geomorphology, 293, 240-254.

Fung, T., LeDrew, E., 1988. The Determination 
of Optimal Threshold Levels for Change 
Detection Using Various Accuracy 
indices. Photogrammetric Engineering 
and Remote Sensing, 54, 1449-1454.

Gokceoglu, C., Aksoy, H., 1996. Landslide 
susceptibility mapping of the slopes in the 
residual soils of the Mengen region 
(Turkey) by deterministic stability 
a n a l y s e s  a n d  i m a g e  p r o c e s s i n g 
techniques. Engineering Geology, 44, (1-
4), 147-161.

Hirano, A., Welch, R., Lang, H., 2003. Mapping 
from ASTER stereo image data: DEM 
validation and accuracy assessment. 
ISPRS Journal of Photogrammetry and 
Remote Sensing, 57, (5-6), 356-370.

Inglada, J., Muron, V., Pichard, D., Feuvrier, T., 
2007. Analysis of Artifacts in Subpixel 
Remote Sensing Image Registration. 
Geoscience and Remote Sensing, IEEE 
Transactions, 45, (1), 254-264.

Jayangondaperumal, R., Thakur, V. C., 2008. 
Co-seismic secondary surface fractures 
on southeastward extension of the rupture 
zone of the 2005 Kashmir earthquake. 
Tectonophysics, 446, (1-4), 61-76.

Jensen, J. R., 2005. Introductory digital image 
processing : a remote sensing perspective: 
Third edition ed.; Prentice-Hall: Upper 
Saddle River, 526.

Kamp, U., Growley, B. J., Khattak, G. A., 
Owen, L. A., 2008.  GIS-based landslide 
susceptibility mapping for the 2005 
K a s h m i r  e a r t h q u a k e  r e g i o n . 
Geomorphology, 101, (4), 631-642.

Kaneda, H., Nakata, T., Tsutsumi, H., Kondo, 
H., Sugito, N., Awata, Y., Akhtar, S. S., 
Majid, A., Khattak, W., Awan, A. A., 
Yeats, R. S., Hussain, A., Ashraf, M., 
Wesnousky, S. G., Kausar, A. B., 2008. 
Surface Rupture of the 2005 Kashmir, 
Pakistan, Earthquake and Its Active 
Tectonic Implications. Bulletin of the 
Seismological Society of America, 98, 
(2), 521-557.

Kazmi, A. H., Jan, M. Q., 1997. Geology and 
Te c t o n i c s  o f  P a k i s t a n .  G r a p h i c 
Publishers, Karachi, 554.

Keren, D. A. P., Shmuel., Brada,  R., 1988. 
Image Sequence Enhancement Using 
Sub-pixel Displacements. In Proceedings 
of IEEE Conference on Computer Vision 
and Pattern Recognition, 742-746.

Keyport, R. N., Oommen, T., Martha, T. R., 
Sajinkumar, K. S., Gierke, J. S., 2018. A 
comparative analysis of pixel- and object-
based detection of landslides from very 
high-resolution images. International 
Journal of Applied Earth Observation and 
Geoinformation, 64, 1-11.

Kim, S. P., Bose, N. K., Valenzuela, H. M., 
1990. Recursive reconstruction of high 
r e s o l u t i o n  i m a g e  f r o m  n o i s y 
undersampled multiframes. Acoustics, 
Speech and Signal Processing, IEEE 
Transactions on, 38, (6), 1013-1027.

Lee, S., Lee, M. J., 2006. Detecting landslide 
location using KOMPSAT 1 and its 
application to landslide-susceptibility 
mapping at the Gangneung area, Korea.



49

Advances in Space Research, 38, (10), 
2261-2271.

Leprince, S., 2008. Monitoring Earth surface 
dynamics with optical imagery. Thesis, 
California Institute of Technology, 
California.

Leprince, S., Barbot, S., Ayoub, F., Avouac, J. 
P. ,  2007.  Automat ic  and Precise 
Orthorectification, Coregistration, and 
Subpixel Correlation of Satellite Images, 
Application to Ground Deformation 
Measurements. Geoscience and Remote 
Sensing, IEEE Transactions on, 45, (6), 
1529-1558.

Ling, F., Xiao, F., Du, Y., Xue, H., Ren, X., 
2008. Waterline mapping at the subpixel 
scale from remote sensing imagery with 
high‐resolution digital elevation models. 
International Journal of Remote Sensing, 
29, (6), 1809-1815.

Martha, T. R., Kerle, N., Jetten, V., van Westen, 
C. J., Kumar, K. V., 2010. Characterising 
spectral, spatial and morphometric 
properties of landslides for semi-
automatic detection using object-oriented 
methods. Geomorphology, 116, (1-2), 24-
36.

Martin,  Y. E. ,  Franklin,  S.  E. ,  2005. 
C l a s s i f i c a t i o n  o f  s o i l ‐  a n d 
bedrock‐dominated landslides in British 
Columbia using segmentation of satellite 
imagery and DEM data. International 
Journal of Remote Sensing, , 26, (7), 
1505-1509.

Mather, P. M., 2004. Computer processing of 
r e m o t e l y  -  s e n s e d  i m a g e s  :  a n 
introduction: 3rd ed.; Wiley & Sons: 
Chichester , 352.

Mertens, K., Verbeke, L. P., De Wulf, R. R., 
2008. Sub-pixel mapping: A comparison 
of techniques. Ghent, Belgium, Ghent 
University.

Mondini, A. C., Guzzetti, F., Reichenbach, P., 
Rossi, M., Cardinali, M., Ardizzone, F., 
2011. Semi-automatic recognition and 
mapping of rainfall induced shallow 
landslides using optical satellite images. 
Remote Sensing of Environment, 115, (7), 
1743-1757.

Moosavi, V., Talebi, A., Shirmohammadi, B., 
2014. Producing a landslide inventory 
map using pixel-based and object-
oriented approaches optimized by 
Taguchi method. Geomorphology, 204, 

646-656.
Keyport, R., Oommen, T., Martha, T., 

Sajinkumar, K. S., Gierke, J. A., 2018. 
comparative analysis of pixel- and object-
based detection of landslides from very 
high-resolution images, 64.

Necsoiu, M., Leprince, S., Hooper, D. M., 
Dinwiddie, C. L., McGinnis, R. N., 
Walter, G. R., 2009. Monitoring migration 
rates of an active subarctic dune field 
using optical imagery. Remote Sensing of 
Environment, 113, (11), 2441-2447.

Nichol, J., Wong, M. S., 2005. Satellite remote 
sensing for detailed landslide inventories 
using change detection and image fusion. 
International Journal of Remote Sensing, 
26, (9), 1913 - 1926.

Nijmeijer, R. G., de Haas, A., Dost, R. J. J., 
Budde, P. E., 2001. ILWIS 3.0 Academic : 
user's guide: ITC, ILWIS: Enschede, 530.

Roettger, S.,  2007. NDVI-based vegetation 
rendering: Acta Press Anaheim: Anaheim, 
41-45.

Saba, S. B., Ali, M., van der Meijde, M., van der 
Werff, H., 2017. Co-seismic landslides 
automatic detection on regional scale with 
sub-pixel analysis of multi temporal high 
resolution optical images: Application to 
southwest of Port au Prince, Haiti. Journal 
of Himalayan Earth Sciences, 50, (2), 74-
92.

Saba, S. B., Van der Meijde, M., Van der Werff, 
H., 2010. Spatiotemporal landslide 
de tec t ion  fo r  the  2005  Kashmir 
earthquake region. Geomorphology, 124, 
(1), 17-25.

Saba, S. B., Van der Meijde, M., van der Werff, 
H., 2010. Spatiotemporal landslide 
de tec t ion  fo r  the  2005  Kashmir 
earthquake region. Geomorphology, 124, 
(1-2), 17-25.

Scherler, D., Leprince, S., Strecker, M. R., 
2008. Glacier-surface velocities in alpine 
terrain from optical satellite imagery-
Accuracy improvement and quality 
a s se s smen t .  Remote  Sens ing  o f 
Environment, 112, (10), 3806-3819.

Schneevoigt, N. J., Van der Linden, S., Thamm, 
H. P., Schrott, L., 2008. Detecting Alpine 
landforms from remotely sensed imagery. 
A pilot study in the Bavarian Alps. 
Geomorphology, 93, (1-2), 104-119.

Sibaruddin, H. I., Shafri, H. Z. M., Pradhan,



50

Haron, N. A., 2018. Comparison of pixel-
b a s e d  a n d  o b j e c t - b a s e d  i m a g e 
classification techniques in extracting 
information from UAV imagery data. IOP 
C o n f e r e n c e  S e r i e s :  E a r t h  a n d 
Environmental Science, 169, (1), 012098.

Teshima, Y., Iwasaki, A., 2008. Correction of 
Attitude Fluctuation of Terra Spacecraft 
Using ASTER/SWIR Imagery With 
Parallax Observation. Geoscience and 
Remote Sensing, IEEE Transactions on, 
46, (1), 222-227.

Thornton, M. W., Atkinson, P. M., Holland, D. 
A., 2006. Sub‐pixel mapping of rural land 
cover objects from fine spatial resolution 
s a t e l l i t e  s e n s o r  i m a g e r y  u s i n g 
super ‐ resolut ion pixel ‐swapping. 
International Journal of Remote Sensing, 
27, (3), 473-491.

Townshend, J. R. G., Justice, C. O., Gurney, C., 
McManus, J., 1992. The impact of 
misregistration on change detection. 
Geoscience and Remote Sensing, IEEE 
Transactions on, 30, (5), 1054-1060.

Tsai, F., Hwang, J. H., Chen, L. C., Lin, T. H., 
2010. Post-disaster assessment of 
landslides in southern Taiwan after 2009 
Typhoon Morakot using remote sensing 
and spatial analysis. Nat. Hazards Earth 
Syst. Sci., 10, (10), 2179-2190.

Van Oort, P. A. J., 2007. Interpreting the change 
detection error matrix. Remote Sensing of 
Environment, 108, (1), 1-8.

Vu, T. T., Matsuoka, M., Yamazaki, F., 2005. 
Detection and animation of damage using 
very high-resolution satellite data 
f o l l o w i n g  t h e  2 0 0 3  B a m ,  I r a n , 
Earthquake. Earthquake Spectra, 21, (S1), 
319-327.

Weirich, F., Blesius, L., 2007. Comparison of 
satellite and air photo based landslide 
susceptibility maps. Geomorphology, 87, 
(4), 352-364.

Yalcin, A., 2008. GIS-based landslide 
susceptibility mapping using analytical 
hierarchy process and bivariate statistics 
in Ardesen (Turkey): Comparisons of 
results and confirmations. CATENA, 72, 
(1), 1-12.

Yamaguchi, Y., Tanaka, S., Odajima, T., Kamai, 
T., Tsuchida, S., 2003. Detection of a 
landslide movement as geometric 
misregistration in image matching of 
SPOT HRV data of two different dates. 
International Journal of Remote Sensing, 
24, (18), 3523 - 3534.

Zaré, M., Karimi-Paridari, S., MonaLisa., 
2009. An investigation on Balakot, 
Muzaffarabad (Pakistan) earthquake, 8 
Oct. 2005, Mw 7.6; geological aspects 
and intensity distribution. Journal of 
Seismology, 13, (3), 327-337.


