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Abstract

The rock mass deformation modulus is an important parameter in numerical modeling for the
stability analysis of tunnels and underground excavations. This parameter can be determined by
direct and indirect methods. The direct method includes in-situ tests which are costly, timing
consuming and the reliability of the result is also questionable. In indirect method different
empirical models are used for estimation of rock mass deformation modulus. In this paper Rock
Mass Rating (RMR), Geological Strength Index (GSI), Young Modulus of Elasticity and
Uniaxial Compressive Strength (UCS) were used as input parameters in empirical models for
determination of deformation modulus for rock mass. The Multi Liner Regression (MLR) and
Artificial Neural Network (ANN) were used for assessment of the prediction performance of
different established empirical models for estimation deformation modulus for rock mass. After
analysis and comparison of results obtained from MLR and ANN, it was concluded that, the
ANN based model predicting performance is better as compared to MLR model for all five data
sets and the performance of both models is much better for those data sets which are collected
from empirical equation containing three input variables.

Keywords: Deformation modulus; Multi Liner Regression (MRL); Artificial Neural Network
(ANN).

1. Introduction costly and the results may be questionable
The rock mass deformation modulus is (Khabbazi et al. (2013); Sonmeza et al.
used as one of the important parameter in (2006) due to anisotropic nature, presence of
numerical modeling and assessment of the discontinuities, Inhomogeneous and Not-
pre-failure mechanical behavior of the rock  Elastic nature of rock masses (Jing, 2003)
mass (Jiayi Shen et al. (2012); Okay Aksoy et availability —of expertise, accuracy of
al. (2012); Ebrahim Ghotbi Ravandi et al. instruments, difficult testing procedures used
(2013); Hoek & Diederichs (2006); for measuring deformation modulus (Dinc et
Gholamneja et al. (2013). This parameter is  al.,, 2011; Candan Gokceoglu (2004); Jiayi
determined by direct and indirect methods. In Shen et al. (2012) deflection of plates and
indirect methods various in-situ tests are used, cracks produced during blasting (Ribacchi
like plate jack, flat jack and load jack, radial 1988; Kayabasi et al., 2003).
jack, load jack etc (Candan Gokceoglu,

2004). For these tests adits or drifts having In indirect method different established
2m span and 2.5m height is excavated using  empirical models were used for estimation of
drill machine or blast (Okay Aksoy et al. rock mass deformation modulus. These

(2012). These tests are time consuming, models used different input parameters likes
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rock mass rating (RMR) (Bieniawski, 1973),
tunneling quality index (Q-system) (Barton et
al., 1974) geological strength index (GSI)
(Hoek & Brown, 1997) and mechanical
properties of rock masses. In current era of
research in the field of rock engineering the
researchers gaining more interest in
estimation of deformation modulus through
different empirical models rather than in situ
tests. Because the empirical models are
simple, cost effective and required limited
input data for estimation of rock mass
deformation modulus. Numbers of empirical
models developed by different researchers
which does not shows that which model give
high degree of accuracy in determination of
deformation modulus. The predicting and
estimation of deformation modulus using
inductive modelling techniques, computer
programming and fuzzy logic is interesting
area for the research (Kayabasi et al., 2003;
Grima & Babuska 1999; Singh et al., 2001;
Gokceoglu & Zorlu 2004; Gholamneja 2013,;
Tutmez & Tercan 2007; Tiryaki 2008).

In the present research rock mass along
alignment of tunnel was classified into GU1,
GU2 and GU3 units using RMR, Q and GSI
classification systems. The rock mass
deformation modulus was estimated using

Nicholson and Bieniawsk (1990), Hoek and
Brown (1997), Sonmez et al. (2006), Beiki et
al. (2010) and Carvalho. The prediction
performance of these empirical models was
evaluated using Multi Regression Models and
Artificial Neural Network.

2. Rock mass classification and laboratory
tests data of project

The capacity of electric generation for
golen gole hydropower project is 106 MW.
This project is constructing at golen Gole
River in district Chitral Khyber Pakhtunkhwa
Pakistan. The project includes headrace
tunnel and pressure tunnel as major part.
Numbers of tests were carried for
determination of physical and strength
properties of collected representative rock
samples from the alignment of tunnel in rock
mechanics laboratory of mining engineering
department; the average tests values are
presented in table 1. The rock mass along
alignment of tunnel was classified into three
geotechnical units using RMR, Q and GSI
and support systems were recommended for
each geotechnical unit (Sajjad et al., 2017).
The results obtained from rock mass
characterization are presented in table 1.

Table 1. Laboratory tests and classification of rock mass results (Sajjad et al., 2017).

Geotechnical Rock Type UCS | Modulus of | Poison | Rock mass classification
unit MPa elasticity ratio
RMR | Q-system | GSI
MPa (v)
1 Granite 125 3.41e* 0.188 71 11 60
2 Quartz 54 3.42¢* 0.051 59 20 54
Mica
schist
3 Calcareous 106 5e* 0.277 72 17 67
Quartzite
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3. Estimation of rock mass deformation
modulus

The deformation modulus is playing a
vital role in numerical modeling and analysis
of pre-failure of mechanical behavior for rock
mass. Various empirical models are
established for estimation of deformation
modulus by different researchers.

Nicholson and Bieniawski developed
based on RMR as in put parameter, Sonmez
developed empirical model using young
modulus of elasticity and RMR as input
parameters, Beiki et al. presented empirical
model based on GSI and UCS as in put
parameters, Hoek and Brown presented an
empirical model using UCS and GSI as input
parameter, and Carvalho developed an
empirical model using young modulus of
elasticity and GSI as input parameters for
determination of rock mass deformation

modulus was estimated using below empirical
models as shown in table 2.

4. Inductive models for rock mass
deformation modulus prediction using
data collected from empirical equations

The current paper presents the
comparative  analysis ~ of  multi-linear
regression (MLR) and artificial neural

network (ANN) for evaluating the predicting
performance of different five empirical
methods used for estimation of deformation
modulus. The models (MLR and ANN) were
trained and tested using RMR, GSI, Young
modulus of elasticity and UCS. The utility of
ANN-based models in prediction of
Deformation Modulus for Rock Mass and its
comparison with  MLR  models was
investigated in this paper. The input variables
were used in ANN and MLR are presented in
Table 2.

modulus. In this paper the deformation
Table 2. Empirical equations and their results.
S. Equation Researcher Input Rock Mass
No Parameter deformation
modulus (Average
value)
In GPa
GU-1 | GU-2 | GU-3
1 | E; = 0.01E;(0.0028RMR? Nicholson RMR [ 1221 7.91 |18.22
and
0.9 % Bieniawski
+0.9ezz (1990)
2 <(RMR—100)(100—RMR> Sonmez et Eiand 13.67 | 6.91 | 20.60
al (2006 RMR
Erm — Eil() 4000exp(—%) ( )
3 — Z) 3 Beikietal. | GSland | 12.21 | 6.96 | 14.77
E,, = tan|+/1.56 + (In(GSI o,
rm = tan (\/156 + (n(GSN)?) 3o 5010) o
4 [ (651—10) Hoek and GSland | 23.40 | 10.55 | 29.05
Erm = 100 (10 40 ) Brown UCS
(1997)
5 R B Carvalho Ei, GSI 11.83 | 9.93 | 20.28
Erm = Ei(s)r .5 = et o-op (2004) and
carvalho
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Table 3. Description of input variables for the development of ANN and MLR based models.

S.No Empirical Models Input Parameter
Symbols Description
1 Nicholson and Bieniawski | SQ RMR, RMR and Ei | Rock Mass Rating and Young
(1990) Modulus of Elasticity
2 Sonmez et al (2006) Eiand RMR Young Modulus of Elasticity
and Rock Mass Rating
3 Beiki et al. (2010) GSl and UCS Geological Strength Index and
Uniaxial compressive strength
4 Hoek and Brown (1997) GSl and UCS Geological Strength Index and
Uniaxial compressive strength
5 Carvalho (2004) Eiand GSI Geological Strength Index
(GSI), Young Modulus of
Elasticity
4.1. MLR models 3. MLR equation for Beiki et al. data
Output=19.669+0.448 * GSI + 0.039 *
In MLR models the collected data from ues )
five different empirical models are used for -
the development of MLR and ANN models 4 S/ILR equation for Hoek and Brown
L ata
based on _14_6 data sets for the determmat!on Output=51.247+1.031 * GSI + 0.10 *
and prediction of Rock mass deformation ucs @
modulus. The 109 (75% of total data sets)
were used for training of both the models 5. MLR equation for Carvalho data

while 37(25% of total data sets) were used for
validation and testing of models. Since there
were three input variables for Nicholson and
Bieniawski and Carvalho while two input
variables for all the remaining models as
described in Table 2, therefore the same were
used as input variables for development of
inductive models.

Optimal equations were obtained using
MLR model for prediction of deformation
modulus for five empirical models.

1. MLR equation for Nicholson and
Bieniawski data:

Output=14.467+0.0105 * RMR? —
0.941* RMR +0.00034 * E; (1)

2. MLR equation for Sonmez data
Output=45.475+0.6497 * RMR +
0.000385*E; (2)
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Output=13.365+0.1773 * GSI +
0.000363 *E; (5)

The above five equations were developed
based on five mentioned different models.
The statistical analysis of each developed
equation in term of performance is discussed
in later section of the paper. The results
obtained from each equation is presented in
table 4.

Although MLR models are also giving
good results but for more complex
phenomena it failed to predict more
accurately. To overcome this deficiency,
more robust type of Inductive modeling
technique called Artificial Neural Network
(ANN) is used. The following described the
description of ANN, followed by the model
development for the above five options and
then results and discussion.




4.2. ANN based model

It is a human brain mathematical model
that contains interconnected network of
neurons. The basic architecture of ANN
composed of input, hidden and output layer
containing neurons. The ANN models are
adjusted through training and testing process
for model calibration (Zurada, 1992;
Rahmannejad et al., 2010). ANN models are
“black box models” as they are not very
efficient in describing cause and effect
relationship and the expression for the output
is cumbersome and very long. These models
require a lot of data for predicting output from
the given input variables. The ANN models
were developed in Neuro sort software (NSS)
(Lingireddy et al., 2003). The basic
operational procedure of ANN is given in
Figure 2.

The optimal outputs for five empirical
models were achieved using number of
neurons equal to the input variables.
Similarly, the hidden layer neurons were kept
equal to the number of neurons in the input
layers. The sigmoidal activation function was
used for modeling the transformation of
values across the layers.

The prediction performance of both
inductive models (MLR and ANN) were
evaluated based on Root Mean Square error
(RMSE), Average Absolute error (AAE) and
coefficient of determination (R?). The results
are presented in table 4.

5. Results and discussions

The value for Rock Mass Deformation
Modulus was predicted using different
established empirical models based on the
available data. In this study the results
obtained from the above mentioned five
empirical models were used in the
development of inductive models (ANN and
MLR). The results for both models in term of
RMSE, AAE and R? were then compared for
evaluating the predicting performance of each
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model. The results obtained from MLR and
ANN based models for the data obtained from
all the five empirical models are shown in
Table 4 below.
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Fig. 1. Process of ANN model for prediction
(Jeng DS, 2006).

The results shown in table 4 were
compared for the data obtained from five
different types of empirical equations using
both MLR and ANN. This table revealed that
Nicholson & Bieniawski and Carvalho
models shows better prediction performed
better using the data obtained from. The
Carvalho empirical model shows better
prediction of deformation modulus for
proposed rock mass environment as compared
to other empirical models. Similarly, on
comparing the performance of MLR with
ANN it is clear that ANN performed much
better than MLR in term of R? (Performance
measure) RMSE and AAE. The performance
of ANN was noted better to the MLR models.
The same trend is shown for both training and
testing data sets.

The scattered plots for each model based
on ANN and MLR for training and testing
data sets are plotted for comparative analysis
and evaluating the performance of MLR and
ANN models.

5.1.Scattered plots for MLR based models

The plots were drawn for each MLR-based
model using data sets (1-5), including training
and testing sets of data are shown in Figures
2-5:



Table 4. Statistical analysis of five empirical models.

S.No Data Model Training Testing
AAE |RMSE | R? AAE |RMSE| R?

1 Nicholson and ANN | 0.293 | 0.340 | 0.996 | 0.437 | 0.260 | 0.990
Bieniawski MLR | 0.457 | 0.587 | 0.987 | 0.431 | 0.272 | 0.999

2 Sonmez ANN | 0.391 | 0.466 | 0.996 | 0.806 | 0.849 | 0.985
MLR | 1.263 | 1550 | 0.954 | 1.925 | 4.599 | 0.957

3 Beiki et al. ANN | 0.280 | 0.345 | 0.995 | 0.426 | 0.318 | 0.978
MLR | 0.854 | 1.015 | 0.954 | 0.952 | 1.206 | 0.971

4 Hoek and Brown ANN | 0.567 | 0.726 | 0.996 | 0.867 | 1.228 | 0.983
MLR | 2.328 | 2.712 | 0.940 | 2.307 | 6.668 | 0.970

5 Carvalho ANN | 0.059 | 0.082 | 1.000 | 0.069 | 0.010 | 1.000
MLR | 0.290 | 0.414 |0.993 | 0.289 | 0.130 | 0.989

1. Scattered Plots for Nicholson and Bieniawski (1990) using MLR:
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Fig. 2. Scattered plots drawn of MLR based model using Nicholson and Bieniawski (1990) data
set.

2. Scattered Plots for Sonmez (2006) using MLR

Traiming Testing

Predicted Rock Mass Deformation Meodulas nsing MLR
-

Predicted Rock Mass Doformation Medulas using MLR
<

) S 10 15 20 5 10 15 20 25 W

Esttmated Roek Mass Deformation Modulas using Somez. et.al (2000) Estimated Rock Mass Deformation Modulas using Sonmez, ot,al (2006

Fig. 3. Scattered plots drawn of MLR based model using Sonmez (2006) data set.
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3. Scattered Plots for Beiki et al. (2010) using MLR
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Fig. 4. Scattered plots drawn of MLR based model using Beiki et al (2010) data set.

4. Scattered Plots for Hoek and Brown (1997) using MLR
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Fig. 5. Scattered plots drawn of MLR based model using Hoek and Brown (1997) data set.

5. Scattered Plots for Carvalho using MLR
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Fig. 6. Scattered plots drawn of MLR based model using Carvalho data set.
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5.2. Scattered plots for ANN based models and testing sets of data are shown in Figures

The plots drawn for each ANN-based (7-11) below.
model using data sets (1-5) including training

1. Scattered Plots for Nicholson and Bieniawski (1990) using ANN:

Training Teaving
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Estimated Rock Mass Deforsaation Modulas using Nicholson amnd Estimated Rock Mass Deformation Modulas using Nicholson and
Bieninwsk (1990, Blendonwsk (1990

Fig. 7. Scattered plots drawn of ANN based model using Nicholson and Bieniawski (1990) data set.
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2. Scattered Plots for Sonmez (2006) using ANN:
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Fig. 8. Scattered plots drawn of ANN based model using Sonmez, et. al (2006) data set.

3. Scattered Plots for Beiki et al. (2010) using ANN:
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Fig. 9. Scattered plots drawn of ANN based model using Beiki, et. al (2010) data set.
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4. Scattered Plots for Hoek and Brown (1997) using ANN:
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Fig.10. Scattered plots drawn of ANN based model for training and testing data sets using Hoek
and Brown (1997) data set.

5. Scattered Plots for Carvalho using ANN:
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Fig. 11. Scattered plots drawn of ANN based model using Carvalho data set.

5.3. Comparison the performance MLR and

ANN based models
The scattered plots were drawn for all five

available data sets including training and
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testing
ANN and MLR models were compared and

individually. The performance of

evaluated. The results in term of performance
of both models are shown in Figures (12-16).



1. Scattered Plots for Nicholson and Bieniawski (1990) showing Comparison of ANN and
MLR:
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Fig.12. Scattered plots drawn Comparing model performance of ANN and MLR based models
using Nicholson and Bieniawski (1990) data set.

2. Scattered Plots for Sonmez (2006) showing Comparison of ANN and MLR:
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Fig. 13. Scattered plots drawn Comparing model performance of ANN and MLR based models
using Sonmez, et. al (2006) data set.

3. Scattered Plots for Beiki et al. (2010) showing Comparison of ANN and MLR:
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Fig. 14. Scattered plots drawn Comparing model performance of ANN and MLR based models
using Beiki, et. al (2010) data set.
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4. Scattered Plots for Hoek and Brown (1997) showing Comparison of ANN and MLR:
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Fig.15. Scattered plots drawn Comparing model performance of ANN and MLR based models
using Hoek and Brown (1997) data set.

5. Scattered Plots for Carvalho showing comparison of MLR and ANN:
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Fig. 16. Scattered plots drawn Comparing model performance of ANN and MLR based models
using Carvalho data set.

Scattered plots are drawn for MLR, ANN
based models and also for comparison. The
individual as well as the combined plots
showed that ANN based models performance
is better as compared to MLR based model
because the points for earlier are located close
to the 45 degree line as compared to the later
one. Thus it supplements the result that we
obtained from the tables.
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6. Conclusions

The performance of empirical models
used for predicting the deformation modulus
should be verified by inductive modelling
techniques because, accurate prediction of
deformation modulus for any rock mass
environment is very essential for accurate
numerical analysis of stability and pre-failure



mechanical behaviour of rock masses. This
paper investigates the predicting performance
of empirical models using MLR and ANN
based on collected field data from tunnel site.
The MLR and ANN based models were
developed using data collected from five
different empirical equations. The results of
the models were presented in tabular form
showing the values of error measure RMSE
and AAE and performance measures R? and
graphical form showing the scattered plots
between the observed and predicted values.
Form all these results it can be concluded that
the performance of both models are good for
the data sets which were collected from
empirical equation containing three variables
as compared to the data sets containing two
variables. Secondly, on comparing the
inductive models within itself, it was
concluded that for all the data sets the
performance of ANN based models was better
to the MLR based models resulting in high
values of R? and smaller values if RMSE and
AAE. So at the end it is concluded that ANN
is very effective in predicting the rock mass
deformation modulus and can be applied for
better prediction in future. It is also concluded
that the prediction performance of MLR and
ANN models based on Carvalho empirical
model was better as compared to other
empirical models for rock mass of proposed
site.
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