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Abstract 

 

Customary methods for landslide detection are labor demanding, time consuming and 

costly. Moreover, it becomes a real challenge to map event triggered landslides using customary 

techniques. Various automatic and semi-automatic techniques have been proposed for landslide 

detection. These techniques require extensive technical knowledge and familiarity of the selected 

study area for visual interpretation, suitable sampling selection, manual parameterization and the 

trial and error approach for selection of thresholds which makes the process irreproducible. In 

this context, the purpose of this study is to introduce and investigate the applicability of an 

automatic technique of Cosi-Corr (Co-registration of Optically Sensed Images and Correlation) 

for landslide identification on regional scale using high resolution orthorectified worldwies 2 

images. Unlike, conventional pixel based semi-automatic methods which depends on spectral 

properties of pixels, this method is based on pixels shift. The correlation process was performed 

by using the Cosi-Corr software. The ground displacement field measured from the correlation 

indicates high displacement values for landslides triggered by 2010 Haiti earthquake. The 

method automatically identified more than 73% of co-seismic landslides at the threshold value of 

3.75. The adopted procedure proposes a quick and economic way for automatic detection of co-

seismic landslides on regional scale if suitable pre- and post-event satellite data is available. One 

limitation of this method is that it does not show any unique behavioral characteristics for 

different types of landslides so that they could be easily distinguished or classified. 
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1. Introduction 

Correct and rapid mapping of 

landslides is essential to know about the full 

amount and range of landslide disaster 

(Guzzetti et al., 2004; Tsai et al., 2010) and to 

create and validate landslide susceptibility 

models (Guzzetti et al., 2006; Rossi et al., 

2010).  The ability to effectively detect and 

monitor landslides and its potential impacts is 

important to the public, transport authorities, 

utility companies and the agricultural industry 

as such phenomena can threaten life, damage 

infrastructure and have long lasting economic 

effects. 

Customary methods have limitations 

as data collection techniques are labor 

demanding, time consuming and costly. Also, 

accessibility to high mountainous regions is 

difficult. Moreover, it becomes a real 

challenge to map event triggered landslides 

by using customary approaches as happened 

lately when thousands of landslides were 

triggered by Kashmir earthquake, 2005, 

China earthquake, 2008, Haiti earthquake, 

2010 and Brazil rainfall, 2011. Therefore, to 

provide fast and up-to-date landslide 

information over large areas, various 
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automatic and semi-automatic landslide 

detection techniques have been proposed. 

 

  The developed methods could be 

grouped on the basis of type and size of 

geographical elements used for landslide 

mapping, such as, pixel-based group 

(Borghuis et al., 2007; Cheng et al., 2004; 

Khairunniza-Bejo et al., 2010; Metternicht et 

al., 2005; Mondini et al., 2011; Yamaguchi et 

al., 2003) and object-oriented  group (Martha 

et al., 2010; Moine et al., 2009; Park and Chi, 

2008; Stumpf and Kerle, 2011). On the basis 

of number of images used, such as, mono-

temporal (Borghuis et al., 2007; Haeberlin et 

al., 2004) in which single post-event image is 

used and multi-temporal (Lee and Lee, 2006; 

Mondini et al., 2011; Nichol and Wong, 2005; 

Stumpf and Kerle, 2011; Tsai et al., 2010; 

Weirich and Blesius, 2007) in which two or 

more  pre-and post- event imagery are used. 

 

While using Pixel based approaches, 

preliminary efforts by Yamaguchi et al., 

(2003), Cheng et al. (2004) and Lin et al. 

(2005) focused on semi-automatic landslide 

detection using low resolution SPOT 1-3 (10-

20m) images. Yamaguchi et al. (2003) 

applied image registration technique using 

SPOT HRV 10m data and as a result, 

landslide movement was successfully 

detected as misregistration vectors between 

the two satellite images. Likewise, to 

determine land use changes before and after 

the landslide occurrence, occurrences, Cheng 

et al. (2004) used multi-temporal SPOT (20m 

multispectral) data by performing image 

classification (image differencing) approach. 

Similarly, Lin et al. (2005) applied vegetation 

index differencing method using SPOT data 

(multispectral 20m). The above cited 

techniques have benefits and weaknesses. 

Such as Image registration can be used to 

measure sub-pixel movement of landslides 

correctly, but it has great computational cost 

in terms of CPU time. Similarly, Image-

classification reduces the influence of 

atmospheric, sensor and environmental 

alterations among multi-temporal images, but 

it needs proper selection of adequate training 

samples to be used for classification. 

Vegetation index differencing highlights 

changes in spectral response of various 

features and decreases influences of 

topographic effects and illumination. 

Nevertheless, this method also boosts random 

noise or coherent noise (Tang and Dai, 2010).  

 

  Regardless of the limitations related to 

these methods, outcomes are vastly reliant on 

the spatial resolution of the data used for 

landslide detection. SPOT 1–4 data could 

hardly be used for detecting and measuring 

landslides due to its vast spatial extent 

(Metternicht et al., 2005). Slope failures may 

be detected using low spatial resolution 

imagery (SPOT 10m, Landsat TM 30m), only 

if size and contrast is appropriately large, and 

very clear. However, according to previous 

researches, determining landslides types and 

their causes on spatial scales below 1:25000 

are inadequate (Singhroy, 2002). This 

explains that SPOT (10m) to Landsat TM 

(30m) imagery have only been utilized to 

determine landslides related terrain settings, 

such as, lithology, soil humidity, land 

use/land cover information and vegetation 

variation (Cheng et al., 2004; Lin et al., 2002; 

Mantovani et al., 1996 and Zhou et al., 2002.  

 

After the availability of high 

resolution (spatial) images (for example, 

SPOT 5, IKONOS, QuickBird, Cartosat-1 and 

2, Worldview1, 2 and ALOS-PRISM data), a 

new era of research has been initiated for 

preparing better landslide maps. Research 

work based on high resolution images include 

maximum likelihood classifier based change 

detection comparison  by Nichol and Wong, 

(2005), who proposed the use of medium 

resolution, multi temporal satellite images 

(SPOT, XS and IKONOS) for landslide 

recognition and classification. The results 

reported up to 70% detection rates.  However, 

the application of this technique require 

extensive knowledge and familiarity of the 

http://www.sciencedirect.com/science/article/pii/S0034425705002506#bib67
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study area for visual  interpretation 

(Khairunniza-Bejo et al., 2010), suitable 

sampling strategy, and selection of 

appropriate quantity of training samples to get 

high detection  rate.  

 

A very interesting utilization of high 

resolution images comes from  Hervas et al. 

(2003) and Rosin and Hervas (2003) who 

suggested to use computer-generated 

IKONOS digital imagery at 1-m resolution 

from existing aerial photographs to detect 

landslides. In the mentioned method, a new 

technique for change detection was proposed. 

The change detection was based on spatial 

filtering, thresholding and image difference 

for eliminating pixel clusters related to human 

induced land use/land cover changes. In the 

same way, Delacourt et al. (2004) 

demonstrated semi-automatic approaches to 

monitor landslide displacement from high 

resolution multi temporal aerial photographs 

and Quickbird (0.6m) images. This method 

has the potential to detect smaller motions on 

two images acquired with the same sensor. 

These motions can as low as 0.1 m and gives 

a very good example that how high resolution 

images can improve monitoring and mapping 

of landslides. However, these methods can 

only be useful to monitor local scale surface 

changes related to moderate velocity 

landslides. Major efforts were suggested for 

applying in a broad range of landslide 

scenarios in large areas or on regional scale.  

 

All the automatic methods described 

above are pixel-based methods that depend 

mainly on the spectral signal of individual 

pixels. In the last decade, an idea was 

developed in remote sensing community that 

pixel-based methods have major limitations in 

addressing individual landslide characteristic 

due to finite spatial extent. By applying these 

methods, geometric and contextual 

information available in the image are 

basically ignored (Blaschke, 2010). They 

suggested a new semi-automatic technique of 

Object based Image Analysis (OBIA) for 

landslides detection based on combination of 

spectral, morphological, and contextual 

characteristics of landslides supported by 

expert knowledge (Barlow et al., 2006; 

Martha et al., 2010; Moine et al., 2009; Park 

and Chi, 2008; Parker et al., 2011; Ping et al., 

2011; Stumpf and Kerle, 2011). 

 

Primarily, Barlow et al. (2003) used a 

self-contained classification scheme of OBIA 

to detect translational landslide scars with 

overall accuracy of 75 percent. However, 

landslides below 1 ha in size were ignored in 

the accuracy assessment. Then, Martin and 

Franklin (2005) proposed OBIA based 

approach for detection and separating of soil-

lead slides from bedrock-lead slides. For this 

method, Landsat ETM and DEM data was 

employed. Approximately 65% classification 

accuracy was obtained. Barlow et al. (2006) 

further improved the method by 

demonstrating an automated classification 

technique based on image segmentation for 

discriminating classes of repaid mass 

movement from SPOT 5 images and a DEM. 

The overall accuracy was 75 percent, but the 

detection and classification of individual 

types have been less successful. To modify 

the landslide recognition and classification 

results using OBIA, Martha et al. (2010) 

developed rules set to synthesize the 

diagnostic features for semi-automatic 

detection and classification of landslides 

using a combination of high resolution image 

segmentation with DEM data. The overall 

accuracy was 77 percent. However, the 

proposed methodology comprises of 

numerous steps of discrete manual 

parameterization, and the trial and error 

nature for selection of thresholds makes the 

practice irreproducible, cumbersome and 

lengthy. 

 

The above literature review of pixel 

based methods illustrates that very few 

studies have used pixel based approaches for 

landslide mapping by using high resolution 

imagery except Delacourta et al. (2004) who 

http://www.sciencedirect.com/science/article/pii/S0034425705002506#bib26
http://www.sciencedirect.com/science/article/pii/S0034425705002506#bib26
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used real high resolution IKONOS imagery 

instead of simulated images and Borghuis et 

al. (2007) who employed unsupervised image 

classification using SPOT-5 imagery for 

automated landslide mapping (detect 63%). 

These methods still need to be well explored 

due to improved spatial resolution imagery 

(SPOT 5, IKONOS, ALOS, QuickBird and 

WorldView1-2). 

 

Similarly, the literature review of 

object based methods reveal that if a semi-

automated technique based on OBIA has to 

be used then the rules set shall be redefined 

for every area to convert the regions or 

segments into meaningful objects. For good 

rules set, good expert based knowledge is 

required to formulate rules to be incorporated 

on various stages of the analysis, and 

introduction of many parameters means 

introduction of many errors on various stages. 

Additionally, there are different challenges 

involved in processing large datasets. OBIA 

based landslide detection methods also have 

tendency to miss a mark in conditions where 

both newly triggered and older landslides are 

present and therefore it prevents an accurate 

event-related landslide mapping. 

 

In this context, the purpose of this 

study is to introduce, explore the applicability 

and performance of an automatic technique of 

Cosi-Corr (Co-registration of Optically 

Sensed Images and Correlation) for landslide 

identification on regional scale by using 

multi-temporal high resolution optical images. 

Unlike, conventional pixel based semi-

automatic methods, which depends on 

spectral properties of pixels, this method is 

founded on pixels shift. Landslides will be 

identified on the basis of displacement if 

during the pre- and post-event period pixels 

have changed their position. Furthermore, this 

method is totally automatic, so no rules set 

with many parameters and thresholds are 

required to be integrated on different stages of 

the analysis.  

 

2. Study area 

 

A magnitude Mw 7.0 earthquake hit 

15 km southwest of Port-au-Prince region of 

Haiti on January 12, 2010 at 18°27'25"N 

latitude and 72°31'59"W longitude. The 

earthquake happened at a depth of 13 km 

along the Enriquillo-Plaintain Garden fault 

zone (EPGFZ. The fault passes west-east 

laterally to the northern part of the southern 

Haiti peninsula. It is characterized by evident 

tectonic geomorphology comprising of long, 

linear waterway gorges, extensional basins 

along releasing bends, and north- and south-

facing mountain escarpments. Delta fans and 

alluvial valleys display marks of speedy 

sedimentation and substantial movement of 

dynamic drainages over the Quaternary.  

 

Haiti’s has generally hot and humid 

tropical climate. Average temperature ranges 

from 25°C in January and February to 30°C 

in July and August. The average annual 

rainfall is 140 to 200 centimeters. 

Agricultural practices are common on slope 

terraces. Deforestation, erosion, land 

fragmentation and poor primitive agricultural 

techniques are giving rise to increased land 

sliding in the area. 

 

In the epicenter zone and in the 

surrounding valleys, thousands of co-seismic 

landslides were triggered that caused 

widespread damage (Eberhard et al., 2010; 

Ellen et al., 2010). Landslide head scarps and 

debris avalanche were commonly reported 

along the sidewalls of the River Momance 

canyon, within the Mio-Pliocene and older 

limestone bedrock in steep slopes and road 

cuts (Koehler and Mann, 2011).  Co-seismic 

landslides and debris fall were evident in river 

valley with massive debris aprons at the 

bottom of slopes that every so often refract 

the river, and masses of rocks and debris were 

dumped on the river alluvium. 

 

A study site of 120 km2 area is selected in 

the south west of Port-au-Prince (Fig. 1). The 
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site was selected due to its nearness to the 

epicenter, its location along the active fault 

zone (EPGFZ), high concentration of co-

seismic landslides and availability of pre-and 

post-earthquake imagery. The selected area 

has experienced an intricate geologic past of 

incursion, tectonics, corrosion, and 

sedimentation. The topography of the study 

area is relatively rugged ranges from 0 to 

1100m above mean sea level. It has steep 

mountain ranges and hill-fronts, deeply 

incised streams with slope ranges from 15° to 

60°. The narrow intermountain stream valleys 

include River Momance and Frorse. 

In the study area, the Enriquillo fault 

system separates basaltic rocks to the south of 

the fault and sedimentary rocks which consist 

of sandstone and limestone to the north 

(Eberhard et al., 2010). The soils in the 

mountains are thin. The lower hills on west 

side of the study area have abundance of red 

clays and loams.  

 

The lithological formations are explained 

in detail in the following Table. 1, translated 

from Geologique de la Republique D’ Haiti.  

3. Material and methods 

 

In the following section, the dataset 

used will be explained briefly accompanied 

by a short review of the Cosi-Corr technique.  

 

3.1. Satellite Data 

   

The orthorectified worldview-2 data for 

Haiti provided by Digital Globe as part of 

digital globe’s crises event services are 

utilized in this analysis. Pre-event worldview-

2  images of 13 Dec 2009 and post-event 

images dated 15 Jan 2010 were used for the 

detection of landslides (Table.2). The images 

were made available in standard format 

(LV3D) with only RGB bands instead of 

basic imagery format (Level 1B). Spatial data 

with level LV3D mean that it had been 

sensor-corrected, radiometrically-corrected 

and orthorectified. It was acquired with a 

mean viewing angle of 15° for pre-event  and 

16° for post-event imagery. 

 

Table. 1. Lithological description. 

Name 

(Abbreviation) 
Period/System Lithology 

Complex 

Thoelitique 

(Cb) 

(Cretaceous) Sedimentary complex of the south island Peninsula (Fm. 

Demisseau) with massive flows, with or without inter 

bedded sedimentary and metamorphosed basalt, ultramafic 

rocks 

Pliocene (P) (Tertiary) Marls and sands of the central plateau and the big hill 

Pliocene weakly cemented clastic deposits in fans and low 

hills 

Miocene 

Inferieur (Mi) 

(Tertiary) Lower Miocene: Sandstone-pelitic flysche Central Plateau 

calcareous sandstone Basin “Gros Morne” (fm. La Crete) 

lime stones of the platform chain on Paincroix of the 

peninsula and South Island 

Eocene Moyen 

a superieur 

(Ems) 

(Tertiary) Middle to Upper Eocene limestone: (cracked and porous 

carbonate aquifers high permeable)South Island and 

southern slopes of the Massif du Nord also have limestone 

platform of the Massif du Nord 

QFP: Quaternary Holocene to late Pleistocene fluvial alluvium (channel, 

terrace, floodplain and over bank deposits) 
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In order to orthorectify and co-register 

images upto sub-pixel accuracy level, the 

availability of data in basic format with the 

supporting files like RPB and IMD is a 

prerequisite.  However,  due to the 

unavailability of these supporting files, we 

used the images in standard format. These 

images were already orthorectified  and 

radiometrically corrected but from the 

perception of co-registration, there was a 

slight shift between the pre- and post-event 

imagery.  

 

 
 

Fig. 1. Shows the location of the selected study area overlapped by earthquake triggered 

landslides. It is situated in the South of Haiti and adjacent to Portau-Prince. The red color solid 

lines represent active fault lines passing through the area. 

 

Table 2. Analyzed Worldview-2 images 

Image ID WV02 Level 

of data 

Acquisition 

data (dd-

mm-yyyy) 

Avg off-

nadir angle  

Spatial 

resolution 

Time Band 

used 

 

09DEC13152914-S3DS_R01C1-

052299729020_01_P001.TIF 

LV3D 13/12/2009 15° 2m  23:31 Green 

10JAN15152539-S3DS_R01C1-

052300443020_01_P001.TIF 

LV3D 15/1/2010 16° 2m  21:50 Green 

Usually 3N band is selected for 

correlation studies (Ayoub et al., 2008; 

Scherler et al., 2008; Vermeesch and Drake, 

2008). It usually offers the best SNR (signal 

to noise ratio) as it has the largest spectral 

bandwidth. In our case, among the three RGB 

bands resampled to 2m spatial resolution, 
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Green band was selected as it has the largest 

bandwidth after the 3N band (Table. 3).  

 

3.2. Cosi-Corr Technique  

 

A set of techniques/software package/ 

called Co-Registration of Optically Sensed 

Images and Correlation (COSI-Corr) 

described in detail by Leprince et al. (2007) 

and Scherler et al. (2008) has been used in 

this study. In this method, precise and 

accurate image sub pixel level registration 

and correlation have been attained. The main 

function of the COSI-Corr is the precise 

ortho-rectification, co-registration and 

correlation of the remote sensing data.  This 

software has been developed to detect and 

measure sub-pixel movement between optical 

images. In this technique errors due to the 

imaging system are calibrated and modeled. 

Topographic artifacts are characterized and 

solutions are proposed to compensate or to 

filter them. The technique has been tested and 

successfully applied in a number of 

applications by using high and medium 

resolution data (Avouac et al., 2006; Barisin 

et al., 2009; Binet and Bollinger, 2005; 

Dominguez et al., 2003; Herman et al., 2011; 

Konca et al., 2010; Necsoiu et al., 2009; 

Scherler et al., 2008). In most of the analyzed 

cases the co-registration accuracy measured 

was in the order of 1/50 to 1/20 of the pixel 

size (Leprince et al., 2007) 

 

3.3. Correlation   

 

The correlation process was 

performed by using the Cosi-Corr (Co-

registration of Optically Sensed Images and 

Correlation) software. The pre- and post-

event green band with 2m spatial resolution 

captured at 1° apart off nadir sun angle were 

used for sub- pixel correlation process. 

Horizontal displacements were measured by 

using frequential coorelator method with 

multi-scale approach where the initial 

correlation window size was kept at 32 pixels 

(64m) and final window size as 4 pixels (8m). 

The step size was set to 2 pixels with 3 

iterations. The sub-pixel correlation was 

calculated in the east-west, and north–south 

components of the surface horizontal 

displacement field. In order to correlate the 

two pre-and post-event images which were 

not co-registered accurately the output 

gridded option was deselected. To discard any 

potential outliers, values with an SNR lower 

than 0.9, were eliminated.  A destriping of the 

displacement field was executed to suppress 

attitude residuals produced by undulations of 

the observing platforms (Leprince et al., 2007; 

Scherler et al., 2008). 

Table 3. Effective band width of WV2. 

No Band name Effective bandwidth (µm) 

1 Coastal  4.730000  x 10-02 

2 Blue  5.430000  x 10-02 

3 Green 6.300000  x 10-02 

4 Yellow 3.740000  x 10-02 

5 Red 5.740000  x 10-02 

6 Red Edge 3.930000  x 10-02 

7 NIR1 9.890000  x 10-02 

8 NIR2 9.960000  x 10-02 

   

Satellite image data of the selected 

study site of Haiti encompassed eleven 

separate image tiles in standard WV2 tiff 

file format. Supporting data also included a 

metadata file. The eleven images (Figure 2) 

were combined to make a single three band 

image by the mosaic functionality of ENVI 

(ITT VIS, 2011). 

 

3.4. Landslide inventory preparation 
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To better understand the correlation 

results for the Haiti study area, landslide 

inventory is prepared by extensive landslide 

interpretation using high resolution optical 

satellite images (Worldview-2 and Quick 

bird) for the pre- and post-earthquake 

situation. Different landslide types were 

identified and plotted as polygons by using 

multi-temporal visual image interpretation. 

Morphology, vegetation, topography, and 

drainage conditions of the slopes were the 

criteria used for landslide identification and 

classification. Debris flows were combined 

as a single landslide type. On locations 

where two or more than two slides of the 

same type were sharing boundaries but not 

scarps were combined as single polygon. 

Nearly 741 landslides (polygons) with 

different sizes and types were mapped in the 

selected study area of 120 km2. Out of 741 

total landslides, 447 were translational, 294 

debris fall and only 4 rotational slides. 

These landslides are highly concentrated 

along the south facing slopes of the 

structurally controlled major rivers of 

Momance and Frorse.  

  

 

 
 

Fig. 2. Shows pre-and post-event worldview-2 images of the study area taken on December 2009 

(Pre-Event), and on January 2010 (Post-Event). Red lines outlines major fault system in the area, 

Blue line represents Momance River 
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Fig. 3. East-west ground displacement field measured from the cross-correlation worldview-2 

images with de-correlated pixels in black. The ground displacement field measured from the 

correlation of pre- and post-event images reveals high displacement values and decorrelation 

patches inside the cloud areas. Majority of the area shows no displacement (inside the yellow 

range of values near to zero displacement).   

 

4. Results and discussion  

 

4.1. Correlation Results 

 

This process produced two correlation 

images, demonstrating the east–west and 

north–south horizontal components of the 

ground displacement field (Fig. 3). The offset 

is measured in meters. The final spatial 

resolution of the displacement measurement 

maps is 6m. The high displacement values 

that we assume are landslides corresponding 

very well to the location of the mapped 

landslides.  

 

Euclidean norm values were 

calculated by combining the displacement 

maps for the components of motion in the N‐
S and E‐W directions (Fig.4 ). 

 

The ground displacement field 

measured from the correlation indicates high 

displacement values which agrees very well 

with the mapped landslide polygons triggered 

by 2010 Haiti earthquake.  However, the high 

displacement values mostly outspread the 

landslide boundaries as during the correlation 

process half of the correlation window is 

inside the landslide body with totally changed 

characteristics due to the seismic activity 

while the other half is outside landslide 

boundary where things could be recognized 

but not adequate enough to close the 

correlation for those parts. The large 

displacement values mostly coincide with the 

head or scarp and toe (depositional zones) 

areas of the landslides with few high 

displacement values in the center of the 

landslide bodies (Fig. 4).  It also shows high 
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displacement values for the fault lines and 

surface breaks.  

 

4.2. Correlation Discussion 

 

We used image pair with only one 

month time span (32 days, Table.2), therefore, 

landscape changes due to vegetation and man-

made features were limited which reduced the 

possibility of false positives. Irrespective of 

the large displacement measurements for the 

landslide areas except few pixels, there are no 

de-correlation patches visible in the results 

even though pre- and post-event images are 

not totally similar in characteristics. 

Assessment of the high displacement values 

(false positives), other than landslides shows 

that these values have been caused by many 

lateral surface processes. Which are explained 

below in more detail. 

 

The pre- and post-event images were 

not nadir looking but on average captured at 

15° and 16° off-nadir sun angle. Although the 

average off-nadir sun angle was varied by 1° 

yet it was different for the different tiles of 

the scenes. The angle of separation between 

the satellites orbits caused residual 

topographic artifacts. Visual examination of 

the correlation result reveals that due to 

different sun angles in the scenes to be 

correlated when, at the scale of the correlation 

window, shadows orientations have 

dramatically moved, it caused artifacts 

(artificial high displacement) in the results. 

 

In literature, it has been suggested that 

pre- and post-event images should be 

precisely co-registered as it is reported to be 

crucial to automated change detection (Lu et 

al., 2004). In our case, the available data was 

provided into a pre-processed mode without 

metadata on processing levels. The relative 

mis-registration shift between the images was 

up to 2 meters and varied throughout the 

study area. Therefore, distortions related to 

positional shift and parallax artifacts were 

visible in valley bottoms, concave slopes and 

rough topographic areas in the form of false 

positive values (Fig. 3, 4).  As the images 

were given in processed form, therefore, no 

details were available about the used DEM 

for the ortho-rectification. Thus, an added 

source of ambiguity in the correlation maps 

could also be related with errors in the DEM 

that can be traced to regions of narrow valleys 

with high slope and can be azimuth dependent. 

 

 

 

Fig. 4. World-view 2 images correlation results for Haiti earthquake of 2010. The norms of 

displacement and uncertainties were calculated in the north-south and east-west directions and 

then added. 
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In river bed and along the drainage 

lines the main reason for noise or false 

positive values was inundation and 

sedimentation changes by the streams and 

rivers. This was predominantly visible along 

the channel of River Momance alluviums. 

Another reason for large displacement values 

in the main river bed was the result of sensor 

saturation, as white sandy areas (also filled 

with carbonated landslide deposits) appear 

too bright on the images, and therefore, 

unrecorded high radiometric difference 

caused correlation with very high 

displacement values. In alluviums and 

deposits areas, measured displacements are > 

5 m. Few clouds in the North of the river are 

also a source of high displacement values in 

the area.  

 

The results show that vegetation 

changes or man-made features are not a main 

concern in this area.  The largest 

displacements are found on landslides and 

alluviums.  On landslide features, observed 

displacements vary from 3 m to 60 m. Inside 

the landslide body when the correlation 

algorithm could not converged the de-

correlation noise was then modeld as a zero-

mean impulse noise; most of the 

measurements took arbitrary values within the 

range allowed by the correlation window size 

(± half the correlation window size). The 

large displacement values coincide with the 

scarp and toe of the landslides.  Few terrain 

changes were also noticed due to the seismic 

activity in the study area as in the correlation 

map high displacement values are observed 

along the main fault lines in south east.  

 

4.3.  Accurracy assesment results  

 

To assess the quality of correlation 

results and to find changes related to 

landslides, correlation result map was 

classified into “change” and “no-change” 

classes for 13 threshold values selected at 

equal population interval of pixels. The 

results were implemented in the form of 

standard error matrices that compares image 

classification result with ground truth data 

(Congalton, 1991; Czaplewski and Catts, 

1992; van Oort, 2007). Results were plotted 

in the form of Receiver-Operating 

Characteristic Curve (ROC) curve which 

provides a way to select an optimal threshold 

and to discard sub-optimal ones individually 

from the class distribution, based on the 

uncertainty associated with a specific 

classification threshold. The ROC curve for 

each classification is determined by 

calculating the sensitivity and specificity: 

                                                                  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

a+b
       (1) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
d

b+d
      (2) 

 

Where a represents true positive, d true 

negatives, b false positives, and c false 

negatives 

  

The sensitivity of the model is the 

amount of positive pixels correctly predicted, 

(i.e., the possibility that a pixel belonging to a 

certain class is correctly identified). The 

specificity of the model is the fraction of 

negative pixels correctly predicted (i.e., the 

probability that a pixel not belonging to a 

particular category is correctly identified). 

 

4.4. Accurracy assesment discussion/ 

Comparsion with other methods 

 

According to the ROC curve for 

identification of the changes caused by 

landslides, the ideal classification threshold 

shall be 3.75. For which the sensitivity of the 

model was 0.73, corresponding to a 27% 

probability of an omission error. In other 

words on threshold value 3.75 in total 73% of 

landslides is correctly detected automatically 

in the selected study area (Table 4). 

 

By selecting a threshold value 3.75 as 

a cut point between changes and no-changes, 

we assume that the co-seismic landslides are 
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the only cause for the changes on the land 

surfaces. Alterations occurred due to other 

reasons, including e.g. phenological 

disparities, agronomic practices and 

construction, introduce noise which has been 

addressed in this paper.  

 

One limitation of this method of co-

seismic landslides identification is that it does 

not show any unique behavioral 

characteristics for different types of landslides 

so that they could be easily distinguished or 

classified. This is a limitation, only if the 

event-inventory is produced for susceptibility, 

hazard, or risk assessment studies. But, then 

again in an active circumstance when a 

disaster struck, fast production of an 

inventory of co-seismic landslides is more 

significant than making of a comprehensive 

inventory that involves great cost and much 

time to be consumed. As an alternate, a semi- 

automatic object based image processing 

technique could be implemented to detect co-

seismic landslides and the sub-types. The 

OBIA techniques will exploit information 

extracted from the satellite images and DEMs 

(Barlow et al., 2006; Martha et al., 2010), but 

then it will involve extra time and precise 

expertise to create and tune an appropriate 

rules set of criteria. Furthermore, object based 

techniques for landslide detection could not 

be used for the preparation of event based 

landslide inventory as OBIA have a tendency 

to fail when both old and newly triggered 

landslides are present in the area (Ping et al., 

2011). 

 

 

Fig. 5. Receiver-Operating Characteristic Curve (ROC) analysis of the displacement values to 

observe the shift between true positive and false positive values on each threshold. 

 

Table 4.  Accurracy assesment result at threshold value 3.75. 

 Classification results 

slide  No-slide Total 

G
ro

u
n

d
 T

ru
th

 d
a
ta

 

 Area in pixels 

(1pix=6m*6m) 

% Area in pixels 

(1pix=6m*6m) 

% Area in pixels 

( 1pix=6m*6m) 

% 

slide 66176 73.26% 426985 30.89% 493161 33.48% 

No-

slide 

24158 26.74% 955509 69.11% 979667 66.52% 

Total 90334 100% 1382494 100% 1472828 100% 

01.331.74
2.05
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2.63
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4.5. Velocity vectors behavior in different 

types of landslides 

 

Figure 5 presents the velocity field 

over the co-seismic landslide areas. High 

magnitude vectors are more concentrated over 

landslide bodies, showing high offset values 

for pixels moved or changed due to landslides. 

The vectors orientation is arbitrary instead of 

downslope trend. The scarp area and 

depositional zones show high magnitude 

vectors. Stable areas outside landslide bodies 

also show some velocity instead of zero 

displacement most probably due to the fact 

that various parts of the study area have 

shifted relatively to each other after the 

occurrence of the earthquake. 

 

 

 

Fig. 6. Vector field plotted from the North/South and East/West displacement maps for two sub-

sections in River Momance valley. It signifies the 2D ground displacement caused by co-seismic 

landslides.  
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Fig. 7.  Magnitude and direction of vectors in different types of landslides 
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Figure 7 shows velocity field over 

different types of landslides. Translational 

and rotational landslides are mainly 

distinguished on the basis of the geometry of 

slip surface (Varnes, 1978). Rotational 

landslides are identified by a curve slip 

surface and translational landslides are 

characterized by planar or semi-planar surface.  

Therefore, translational landslide vectors shall 

be characterized by equal amplitude vectors 

from scarp to depositional zone. “A rotational 

landslide presents for its part a decrease of the 

ratios of vertical to horizontal displacements, 

from top to bottom of the landslide”(Casson 

et al., 2005; Dikau et al., 1996) . In debris fall, 

there is no specific surface of failure. In the 

case of translational landslides (Fig.7 C,D) in 

our study area, it is clearly visible that 

displacement vectors are not equal on the 

landslides and neither they are moving 

downslope. It suggests that landslides do not 

present a planar slip surface with a 

translational behavior. These interpretations 

are the characteristic of a non-uniform 

landslide behavior. In rotational landslides, 

the vectors does not seems to take plunge near 

the head or scarp of the landslide, though it 

shows concentration of high magnitude 

vectors. The vectors directions are random 

and there is no specific pattern visible in 

different parts of the landslide. Vector 

directions are arbitrary and mostly indicating 

upslope movement in all landslide bodies 

irrespective of the landslide type 

(translational or rotational).  Results also 

show that even in translational landslides and 

slumps in which slide bodies were intact and 

moved few meter, the vector directions were 

pointing into random directions (Fig. 7C). 

However, the amplitude of vectors on scarp 

and depositional areas is high inside all 

landslide types. 

 

The following few points could be the 

possible explanation for the random 

directions of vectors in landslides 

 This method has mainly developed to 

measure horizontal offset within few 

(<4m) meters on larger scale instead 

of measuring larger horizontal offset 

(>5m) on smaller scale of a landslide. 

 Landslides are actually vertical 

movement on steep slopes from the 

scarp to the accumulation zones. This 

method works well for measuring 

horizontal displacement and it face 

problems when measuring vertical 

displacement. 

 Due to the total loss of correlation 

inside landslide body and high 

velocity for the marginal parts of the 

landslides, the shift cannot be 

calculated properly. 

 Selecting an added threshold of 0.99 

to the signal-to-noise ratio map 

usually limits the data to low-relief 

areas and landslides are mostly 

located on steeper slopes. 

 

5. Conclusions 

 

The paper describes a new automatic 

technique of COSI-Corr for co-seismic 

landslide identification on regional scale by 

using high resolution data. The method 

successfully identified more than 73% of co-

seismic landslides regardless of their size due 

to the good spatial and temporal resolution of 

the satellite images. The results show that 

high magnitude vectors could be used to 

identify areas of high displacement due to 

landslides on regional scale but the direction 

and behavior of vectors could not be used to 

detect the true direction of slides and 

distinguish different types of landslides. The 

adopted procedure proposes a quick and 

economically way for the preliminary, but 

reasonably accurate, automatic detection of 

co-seismic landslides on regional scale if 

suitable pre- and post–event satellite data is 

available. 

 

The difference in the sun elevation 

and slight shift incidence angles of the pre- 

and post-image adds on in biasing the 

correlation measurements on topographic 
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features by showing high false positive values. 

The results could be further improved by 

using correctly ortho-rectified and accurately 

co-registered nadir looking images.  
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