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Abstract

 In the present study, analyses of log- and logratio-transformation of stream geochemical data of Au in 
1:100000 Feyzaabad sheet are compared with each other. Logratio (alr, clr, or ilr) transformations, compared 
to log-transformation, of stream sediment geochemical data improve mapping of Au anomalies which 
indicates presence of mineralization. Particularly, the anomaly maps of Au derived from clr- or ilr-
transformed stream sediment geochemical data are better, than the anomaly maps of Au derived from log- or 
alr-transformed data. The results of the study suggest that stream sediment geochemical data in the study area 
should be clr- or ilr- transformed to enhance recognition of anomalous multi-element associations reflecting 
the presence of mineralization. The enhancement of anomalous multi-element associations is the most 
important benefit of either clr- or ilr-transformation compared to either ln- or alr-transformation of stream 
sediment geochemical data.

Keywords: Compositional data; Log-ratio transformations; Concentration-area plots; Au anomalies;  
        Feyzaabad; Iran.

1.   Introduction

 There are high mineral potentials and a 
multitude of discovered minerals in Iran. One 
of the gold and copper mineralization areas in 
Iran is the study area in 1:100,000 Feyzaabad 
sheet, East of Iran, located in the eastern 
continuation of Taknar mineralization zone, 
and is bounded by Darouneh and Rivash faults 
(Heydari, 2011). In the study area, various 
kinds of mineralization can be seen that may or 
may  not  be  accompanied  by  gold 
mineralization with different concentrations. 
The mineralization is generally formed of 
specularite + quartz + chalcopyrite + pyrite + 
malachite + hematite + gold (Heydari, 2011).

 Quantity evaluation of chemical 
constituents of earth materials in order to find 
controlling parameters for elemental 
distributions has been carried out in the 
geochemistry (Goldschmidt, 1937). A classical 
example for a closed array or closed number 
system is a  data set in which the individual 
variables are not independent of each other but 
are related by being expressed as a percentage 
or parts per million (Filzmoser et al., 2009a; 
Reimann et al., 2012). Compositional data have 
been explained as summing up to a constant, 
but nowadays they have a broader explanation, 
as they are considered to be a part of the whole 

data which only include relative information 
(Buccianti and Pawlowsky-Glahn, 2005; 
Pawlowsky-Glahn and Egozcue, 2006).
 
 In the last five decades, various researchers 
have discussed the conflicts in statistical 
analysis of closed number systems such as 
compositional data sets (Aitchison, 1981, 1983, 
1984, 1986, 1999; Aitchison et al., 2000; 
Egozcue et al., 2003; Buccianti and 
Pawlowsky-Glahn, 2005; Egozcue and 
Pawlowsky-Glahn, 2005; Thió-Henestrosa and 
Martín-Fernández, 2005; Filzmoser et al., 
2009a, 2009b; Carranza 2011; Wang et al., 
2014). For opening closed number systems, 
three logratio transformations have been 
suggested: (1) additive logratio (alr) 
transformation (Aitchison, 1986), (2) centered 
logratio (clr) transformation (Aitchison, 1986) 
(3) isometric logratio (ilr) transformations 
(Egozcue et al., 2003). In addition, Filzmoser et 
al. (2009b) discussed that, except for the three 
logratio transformations which are suggested 
for opening of close number systems, any other 
transformation of compositional variables is 
not effective.
 
 Several software packages have been 
proposed (Thió-Henestrosa and Martín-
Fernández, 2005; Van den Boogaart and 
Tolosana-Delgado, 2009) and have prepared

85

Journal of Himalayan Earth Sciences Volume 48, No. 2, 2015 pp.85-100



86

for the public (R Development Core Team, 
2008; Templ et al., 2009) for proper analysis of 
composit ional  data.  Thus,  with the 
establishment of the mathematical formalism 
and public accessibility of software for 
compositional data analysis, practitioners and 
scientists in the field of exploration should no 
longer follow improper procedures for analysis 
and mapping of geochemical anomalies for 
mineral exploration (Carranza, 2011). 

 However, in spite of the significant 
progress in addressing  the conflicts in 
statistical analyses of closed number systems, 
the log-ratio transformations in order to open 
the closed number systems are still rarely 
applied for analysis and mapping of 
geochemical  anomal ies  for  mineral  
exploration. Many researchers, in the field of 
geochemical exploration for data normality still 
usually apply a log or natural log (ln) 
transformation. Therefore, to demonstrate and 
document that  the developments in 
compositional data analysis are beneficial in 
mineral exploration, several inspections and 
investigations are in order. The objective of this 
study is to investigate the following question.

 - Does log-ratio (i.e.,alr, clr and ilr)  
  transformation, in comparison with log 
  transformation of stream sediment  
  g e o c h e m i c a l  d a t a  i m p r o v e    
  interpretation and mapping of  
  anomalies representing the presence of 
  mineralization?

1.1. Geology of study area

 Feyzaabad sheet by scale of 1:100000 is 
located in Khorasan Razavi province in the east 
of Iran. The study area is located in the central 
part of Khaf-Bardaskan volcanic-plutonic belt 
(Mazloumi et al., 2008), between two major 
faults: Darouneh in the south and Taknar 
(Rivash) in the north. Both the faults are of slip-
strike type and have an approximate east-west 
trend (Heydari, 2011). This belt is also 
introduced as Taknar (Eftekharnezhad et al., 
1976; Lindenberg et al., 1983).  Different 
researchers in their investigations, described 
the ore bodies which are located in this belt, 
meanwhile according to geochemical and 
geological indicators, they found that the 

aforementioned belt has certain geological and 
magmatism conditions that caused Au 
mineralization (Mazloumi et al., 2008). Four 
considerable gold mineralizations were 
recognized in the study area (Exploration Co. 
Jiangxi, 1994; Heydari, 2011; Shahi and 
Kamkar-Rouhani, 2014) (Fig. 1). The Taknar 
mineralization belt is underlain by Precambrian 
and Paleozoic basement, and overlain by 
Mesozoic and Cenozoic cover. There are facial 
and structural differences between this zone 
and adjacent zones. 

 Cambrian strata is exposed only in the 
southwest of the region, the main lithologies are 
limestone, dolomite, shale and sandy shale. The 
exposed Ordovician district is the same as that 
of Cambrian where the main lithologies are 
shale and siltstone (Fig. 1). The exposed 
Silurian district closely adjoins that of 
Ordovician, the lithologies of the lower part are 
thin bedded limestone and shale and the upper 
part are sandstone, dolomite with gypsum. 
Devonian is exposed only in south west of the 
region (Fig. 1).  The lithologies of the lower 
part are black dolomite and shale while that of 
the upper part are limestone and dolomitic 
limestone. Jurassic is mainly exposed in the 
north-eastern part of the study area where the 
lithologies are dolomitic limestone, limestone, 
marl and shale. Cretaceous is extensively 
distributed in the northern part of the region.  
The lithologies of the lower part are sandstone 
and conglomerate while of the upper part has 
Globotruncana limestone. Tertiary can be 
divided in to two parts (Paleogene and 
Neogene) (Fig. 1).

 Paleogene is exposed in the central part 
and the northern part of the region characterized 
by volcanic rocks, whose lithologies are 
andesite, tuff, pyroxene andesite, trachyte, 
tuffaceous breccia, sandstone, marl, limestone 
and conglomerate. Neogene is exposed in the 
southern part of the region characterized by 
clastic rocks, whose main lithologies are 
conglomerate, sandstone, siltstone, marl with 
gypsum and a little volcanic clastic rock 
(Behrouzi, 1987). Quaternary is mainly 
distributed in the recent alluvial area such as 
intermountainous basin and river bed. Its 
lithologies are sand, gravel and clay. The 
structure of this region is dominated by the
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fractures; the folded structure often appears as 
anticline, being cut by the fractures with small 
and short scale. The distribution of the strata 
and magmatic rock were controlled by the 
faulted structure which is intercalated with N-
W and E-W trending structures. Two major 
faulted structures in south and north are Kavir 
and Northern faulted structure. The first one is 
located in the southwestern part with N-W 
trending; the faulted structure is an east-
extending part of Doruneh inner-arc deep 
fracture projection towards north. The 
distribution of Tertiary volcanic island arc and 
acid magmatic rocks were controlled by the 
north wall while the deposition of Upper 
Tertiary clastic sediments was taken by the 
south wall (Fig.1). The Northern faulted 
structure is located in the northwestern part. 
Trending from WE to NW, the structure 
controls the distribution of serpentinite, basic 
and ultrabasic rocks, being ore-controlling and 
rock-controlling structures (Fig.1). Acid and 
intermediate-acid intrusive rocks are 
extensively exposed in the northern regional 
large fracture, its main lithologies are granite 
and granodiorite, diorite and dacite vein can be 
observed in many places. Serpentinite is 
controlled by E-W- trending faults is 
extensively exposed in northern edge of the 
region (Fig. 1). 

2. Methodology

2.1. Stream sediment geochemical data

 Actual sampling area of the case study in 

2the whole sheet is 2066 Km . In the study area, 
there is data set for 1033 composite basic 
samples of -40 mesh (0.44 mm) fraction of 
stream sediments. (Exploration Co. Jiangxi, 
1994).  The collected samples were analyzed 
for 28 elements. A complete set of analytical 
methods of samples were selected to fit the 
daily analysis for a great amount of samples and 
meet the requirements of geochemical mapping 
and they had high productive efficiency. Only 
seven elements (Au, Cu, Zn, Ag, As, Sb, Hg) are 
discussed here. In order to fit the daily analysis 
for a great amount of samples and meet the 
requirements of geochemical mapping, the 
selected analytical methods and detection 
limits should be of high productive efficiency. 
The concentration of Au  in the samples i.e., 
detected by Spectroscopy with chemical 
enrichment (Es-I) method (Exploration Co. 
Jiangxi, 1994). The concentrations of Cu and 
Zn elements were determined using inductively 
coupled plasmas atomic emission spectroscopy 
(ICP) method (Exploration Co. Jiangxi, 1994). 
Ag concentration was determined by atomic 
emission spectroscopy (ES) method 
(Exploration Co. Jiangxi, 1994).  Also, the 
concentrations of As, Sb and Hg elements were 
detected by atomic fluorescence spectroscopy 
(AFS) method (Exploration Co. Jiangxi, 1994). 
The detection limits of Au, Cu, Zn, Ag, As, Sb, 
Hg were 0.0003, 1, 10, 0.02, 0.2, 0.1, 0.02 ppm. 
Statistical results reveal that mean values of Au, 
Cu, Zn, Ag, As, Sb, Hg are 1.522 ppb, 1.046 
ppm, 1.074 ppm, 1.043 ppm, 1.084 ppm, 1.077 
ppm and 1.076 ppm respectively (Table 1). In 
s t ream   sediment    geochemical

Fig.1. Geological map of 1:100000 Feyzaabad sheet and its situation in the structural map of Iran (Behrouzi,
          1987; Stöcklin, 1968).
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exploration, regardless of chemical pollution, 
the variation from the normal form, have two 
syngenetic and epigenetic components where 
the syngenetic component is related with 
petrogenesis and epigenetic component is 
related to economical mineralization  that is 
known as the explorative useful component. 
Enrichment index is mainly independent of 
petrographic variations and reduces the random 
errors. So generally it is used for the elimination 
of petrographical effects (Hasanipak and 
Sharafaldin, 2004). After calculating the 
enrichment index for different rock 
communities in Feyzaabad sheet, the resulted 
data are integrated with each other and they are 
considered as one statistical community. The 
studied elements are helpful in mapping of 
remarkable anomalies that are associated with 
Au deposits.

2.2. Data transformations

 In order to eliminate the spurious 
relationships between compositions, the family 
of logratio-transformations is used to deal with 
the closure effects. In practice, these 
transformations are commonly employed in 
geochemical data processing to open closed 
systems for better understanding of realistic 
relationships among compositions (Egozcue et 
al., 2003; Carranza, 2011; Filzmoser et al., 
2012; Wang et al., 2014). In this study, the data 
were then transformed using log, alr, clr and ilr. 
Equation (11) of Filzmoser et al. (2009b) was 
used for ilr-transformation in order to 
univariate analysis. For multivariate analysis, 
Eq. (4) of Fizmoser et al. (2009b) was applied 
for ilr-transformation of uni-element data. 
Figure 3 shows the probability plots for raw and 
transformed (log, alr, clr, ilr) Au data in stream 
sediment samples. The probability plots of 
transformed Au data (Fig. 2a-d) are more 
symmetric than probability plot of raw Au data 

(Fig. 2f). Thus, because of using compositional 
data, the logratio-transformed variable, cause a 
proper presentation of the data in Euclidean 
space, has to be applied for the Empirical 
Cumulative Distribution Function (ECDF) 
plot. 

2.3. Spatial representation of stream sediment 
geochemical data

 Visualizing the structure of the spatial data 
on a map is one of the major goals of 
geochemistry in regional scale (Reimann, 
2005). Various methods have been applied 
successfully for mapping geo-chemical data 
and defining the thresholds (upper limit range 
of  background  values)  in  exploration 
geochemistry   and   distinguishing 
anthropogenic versus natural sources of 
materials (Nazarpour et al., 2015). In this study, 
the spatial interpolated maps by inverse 
distance weighting (IDW) method were used to 
portray anomalies. This method is applied with 
12 neighboring samples used for estimation of 
each grid point. IDW is a moving-average 
interpolation method established upon the 
hypothesis that the values of neighboring data 
contribute more to interpolated values than the 
values of distance data (Hosseini et al., 2014). 
The merit of the IDW method is that it is 
instinctive and its implementation is 
uncomplicated. Its main drawback is related to 
the weight evaluations based only on the 
location and disregarding the variance of the 
values (Zuo, 2011).

2.4. Analysis and mapping of geochemical 
anomalies

 The separation of geochemical anomalies 
from background in areas where the 
concentration of elements reveals a potential 
economic interest is a major objective in the

 

Table 1. Statistical parameters of studied elements based on stream sediment samples.
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analysis and interpretation of geochemical 
data.. For the past many years, the traditional 
statistical methods presumed that the 
concentration of chemical elements in the crust 
follow a normal or log-normal distribution. It is 
demonstrated that the spatial position is a 
characteristic of geochemical data, which 
means that the concentration of element has 
spatial variation. However, the traditional 
methods accentuate the importance of only the 
frequency distribution of the elemental 
concentration, but the second group 
concentrates the spatio-statistical distribution 
of geochemical values, for example, 
geostatistical techniques, fractal methods, etc. 
Classical statistical methods are popular 
frequency based methods and widely used in 

many fields. The main limitation of the 
classical approach is that they do not consider 
the spatial information, geometry (e.g., shape 
or form), extent and magnitude of anomalous 
areas (Cheng et al., 1994) and may fail to 
recognize anomalies in regions with high-value 
background or miss weak anomalies in region 
with known mineral deposits (Bai et al., 2010; 
Hassanpour and Afzal, 2013; Nazarpour et al., 
2015).The fractal theory is one of the non-linear 
mathematical methods that was established by 
Mandelbrot (1983) and widely used in many 
scientific fields including geosciences (e.g., 
Turcotte, 1986; Agterberg et al., 1993; Sim et 
al., 1999;Cheng et al.,1994; Carranza, 2008; 
Deng et al., 2010; Sadeghi et al., 2012; Hosseini 
et al., 2014; Nazarpour et al., 2015).

Fig.2. Probability plots of raw and transformed (log, alr, clr, ilr; a-d) and raw (e) Au data in stream sediment 
          samples in 1:100000 Feyzaabad sheet.
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 In this study, the concentration-area (C-A) 
fractal analysis (Cheng et al., 1994, 1996, 1997, 
2000) was adapted for separating background 
and anomalies uni-element and multi-element 
data (Hosseini et al., 2014; Daya and Afzal, 
2015). The method has the general form as 
follow:

 Where    denotes the area with 
concentration values greater than the contour 
value        represents the threshold, and        and 
  are characteristic exponents. The breaks 
between straight line segments in C-A log-log 
plot and the corresponding values of      are 
known as thresholds. They are useful to 
separate ore concentration values into different 
components representing different casual 
factors such as lithological differences and 
geochemical processes and mineralizing events 
(Lima et al., 2003). The C-A method uses to 
display the relationship between element 
concentration values and geological data. The 
most useful feature of the C-A method is its 
capability to compute anomaly threshold 
(Afzal et al., 2010; Sadeghi et al., 2012; 
Rahmati et al., 2014; Hosseini et al., 2014).                     

 For mapping of anomalies representing 
multi-element associations, the transformed 
datasets were individually input to principal 
component  analysis  (PCA).  A PCA 
examination of this data set should cause more 
comprehensive understanding the relations 
between the variables and the geochemical 
processes controlling the element distribution 
in the study area. It is useful to display the 
loadings and scores together in biplots (Gabriel, 
1971). The interpretation of the biplot depends 
on the chosen scale for loadings and scores. For 
the special interpretation of biplots for 
compositional data in the clr space we refer to 
the results of Aitchison and Greenacre (2002). 
A representation of the PCA results in biplots 
(Gabriel ,  1977) results  an accurate 
interpretation of the relations between 
compounds. The maps of the first view PCs 
scores represents the areas with specific higher 
or lower concentrations as a result of some 
significant geochemical processes. Although 
Filzmoser et al. (2009a) emphasized that ln 
transformation of single variables is not 
sufficient for multivariate analysis, the log-
transformed uni-element data were also used in 

PC analysis for the purpose of comparison only 
in order to answer the question raised in the 
introduction. The scores of a PC interpreted to 
reflect the presence of mineralization are 
subjected to the C-A fractal analysis to classify 
and map anomalies representing multi-element 
associations. 

2.5. Comparison of anomalies

 To answer the question raised in the 
introduction, the results of C-A analyses are 
converted  into  binary  geochemical 
background-anomaly maps. Resulted maps are 
compared with reference map (Fig.3) of 
"ground-truth" which shows presence/absence 
of geochemical anomalies because of certain 
occurrences of mineral deposits (Carranza, 
2011). This map was created by assigning a 
label of "anomaly" to samples that contain each 
of the known Au deposits in the study area and 
by assigning a label of "background" to the 
remaining data.

 Each binary geochemical-anomaly map is 
intersected with the map of ground-truth 
presence/absence of geochemical anomalies. 
This operation of crossing two binary maps is a 
map with four overlap conditions, in which the 
numbers of data can be used to measure 
efficiency and performance of binary 
geochemical anomaly mapping.

 In this study, the numbers of data of 
overlap conditions between two binary 
anomaly-background maps are used to 
determine overall accuracy and type I and type 
II errors (Carranza, 2011). Overall accuracy 
(denoted as OA) relates to the ability of the 
analysis to map background and anomalous 
areas. Type I error (denoted as T1E) relates to 
the ability of the transformation for the 
background mapping and it is computed as 
below:

T1E=False background(C)/ (True anomaly 
(A) + False background(C))

 Type II error (denoted as T2E) relates to the 
ability of the transformation for anomaly 
mapping and it is computed as below:

T2E=False anomaly (B)/ (False anomaly (B) 
+ True background (D))

OA= (A+D)/ (A+B+C+D)

(1)
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Fig.3. Binary map indicating Au anomalous regions and Au background regions in 1:100000
          Feyzaabad sheet.

 If both types of errors are lower or OA is 
higher, the analysis ability for background and 
anomaly mapping area will be higher 
(Carranza, 2011). The calculated values of 
errors and accuracy chiefly depend to the type 
of data transformation. A lower T2E is more 
critical than a lower T1E because based on the 
former, the decision to explore for nothing 
would be made. Thus, the single factor applied 
for comparing the performance of the anomaly 
maps obtained in this study is the value of OA. 
The higher will be this value, the better will be 
an anomaly map which indicates that an 
anomaly map has a lower T2E as compared to 
T1E (Carranza, 2011). 

3. Discussions

3.1. Anomaly maps of Au
 
 The C-A plots of log-, alr, clr- and ilr- 
transformed Au data indicate two inflection 
points, showing that the datasets can be divided 
into three classes (Fig. 4). Considering the 
known epithermal –Au deposit occurrences, 
these three classes exhibit background, low 

anomaly, and high –anomaly (Fig.4). The 
anomaly maps which are obtained from the log-
, alr-, clr- and ilr- transformed Au data are quite 
similar to each other (Fig.4). The high 
anomalous regions in the anomaly maps are in 
accordance with the known gold mines and 
deposits. These anomalous areas have a good 
overlap with the E-W and NE-SW trending 
faults and the intrusive and volcanic rocks (Fig. 
4). These suggest that all of different 
transformed Au data result in optimum 
mapping of anomalies using the C-A fractal 
analysis. For comparison with the ground-truth 
anomaly map (Fig.3), the low- and high- 
anomaly classes are re-classified into anomaly 
class. The OAs of the log- and alr-transformed 
Au data is lower than clr- and ilr-transformed 
Au data (Table 2). The values of OA for 
anomaly maps based on log-,alr-,clr- and ilr- 
transformed Au data are 0.83, 0.65,0.87 and 
0.86, respectively (Table 2). These indicate that 
clr-transformed Au data are optimal for 
mapping of anomalies using the C-A fractal 
analysis.
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Table 2. Overall accuracy, Type I and Type II errors with respect to ground-truth background-anomaly map
             (Fig.3) of binary background-anomaly maps obtained from analysis of ln-, alr-, clr- and 
             ilr-transformed Au data. Values in the matrix are number of samples of overlap condition between
             two binary anomaly-background maps.

3.2. Element associations

 Principal component analysis (PCA) is one 
of the most significant and useful multivariate 
statistical procedures (Filazmoser et al., 
2009a). This method vastly used for pre-
process and dimension reduction of data, and 
the PCs are then applied for plotting or for 
subsequent multivariate analyses (Filazmoser 
et al., 2009a). A PCA analysis of the studied 
data set results in a better understanding of the 
relations among the variables and the 
controlling geochemical processes of the 
element distribution in the survey area. Biplots 
which simplify result visualization result in an 
accurate interpretation of the compounds 
relationships, and maps of the first view PCs 
indicate the areas with certain higher or lower 
concentrations because of some remarkable 
geochemical processes (Carranza, 2011). 

 In this study, the PCA results of the log- alr- 
clr- and ilr transformed data are compared with 
each other. The results of the ilr transformed 
data, back-transformed to the clr space are 
applied for compositional biplots.

 PCs of the log- and alr- transformed data 
are strongly similar by considering the 
elemental associations and percentages of total 
variances in the respective datasets (Table 3). 
PC1 of log-transformed data represent 
statistically significant negative correlations 
between all elements except Hg which account 
for at least 61% of total variance in individual 
datasets. These results infer the presence of 
lurking variables. Because opening of closed 
number systems makes it possible in regard to 
all the variables, even if not all variables have 
been measured, the negative correlations 
between all elements in PC1 of either log- or 
alr-transformed data are artificial.

 Therefore, log-transformation of stream 
sediment geochemical data, are insufficient for 
showing multi-element associations that could 
be worth looking in to for mineral exploration. 
Also, the strong resemblance of the PC1 of alr-
transformed data with the PC1 of log-
transformed data shows that alr-transformation 
is ineffective for opening compositional data 
(stream sediment geochemical data).
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Fig. 4. Concentration-area plots of ln-, alr-, clr-, and ilr-transformed Au data and the 
           corresponding classified Au maps according to inflection points of concentration-area 
           plots (solid dots) along straight-line segments fitted through the plots. L=low, H=high. 
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 PC2 represents a Cu-Hg-Au association 
which is likely because of gold mineralization 
and As-Sb association.

 The PC1-PC2 biplots (Fig. 5) for log- and 
alr-transformed data show clearly the typical 
data closure problem. They are largely limited 
to a cramped half-circle. They represent strong 
correlations between all elements and two main 
element associations, namely Au-Cu-Hg and 
Zn-Ag-Sb-As (Fig. 5). PC3 shows an Ag-Hg 
association for both log- and alr-transformed 
data and also Au for alr-transformed data. In 
Table 3, PC4 of log-transformed data show Au-
Ag negative associations and for alr-
transformed data shows Au-As association. 
Finally PC5 for log-transformed data shows Au 
which reflects Au anomalies which are likely 
due to gold mineralization and for alr-
transformed data shows Ag anomalies (Table 
3). 

 The clr- and ilr- transformed data yield PCs 
that are strongly similar in terms of element 

associations and percentages of the total 
variances in respective datasets (Table 3). The  
clr- and ilr-transformed data, produced three 
PCs with eigenvalues >1 (Table 3). 

 Therefore, the results show that that either 
clr- or ilr-transformation is effective for 
opening closed number systems and is 
sufficient for showing multi-element 
associations that could be of interest in mineral 
exploration. In Table 3, PC1 shows Au-Cu-Hg 
and As-Sb associations. PC2 shows Au-Sb 
associations which reflect Au mineralization. 
The PC1-PC2 biplots (Fig. 5) for clr- and ilr- 
transformed data show that the data are now 
opened because the bias due to data closure has 
disappeared. They show four main element 
associations, namely Au, Sb-As, Hg-Cu and 
Zn-Ag (Fig. 5). In Table 3, PC3 reflects Ag 
anomalies that can indicate Au mineralization 
as a pathfinder element for gold deposits. PC4 
shows Cu-Zn-Ag association and Hg anomalies 
and PC5 reflects Au anomalies, which are likely 
due to gold mineralization.

Table 3. Rotated PCs of log-, alr-, clr- and ilr-transformed stream sediment geochemical data. Loadings in
              bold represent statistically significant eigenvector coefficients.



95

 Element relations that are resulted from the 
log- and alr- transformed data are similar to 
those yielded by the clr- and ilr-transformed 
data (Table 3). For example, the Au (-As-Sb) 
relation with PC5 and PC4 for log- and alr-
transformed data respectively is similar with 
PC1 of either the clr- or ilr-transformed data and 
hence these relations reflect the presence of 
gold mineralization in the study area. However, 
if the Kaiser (1960) criterion eigenvalues >1 is 
applied, an anomalous multi-element 
association reflecting the presence of gold 
mineralization in the study area is extracted 
only from either the clr- or ilr-transformed data 
but not from either the ln- or alr-transformed 
data (Table 3).

3.4. Maps of elemental association anomalies

 In the previous section, it was shown that 

the ln- and alr- transformed data represent 
mult i-element associat ion anomalies 
(associated with mineral deposit occurrence) 
that do not explain the substantial proportion 
(i.e., eigenvalues >1) of the total variance in the 
data. In order to examine and map multi-
element association anomalies extracted from 
the log- and alr- transformed data compared 
with multi-element association anomalies 
extracted from the clr- and ilr- transformed 
data, PC scores representing element 
association anomalies in the individual datasets 
are subjected to C-A fractal analysis.

 The PC5 and PC4 of the log- and alr-
transformed data (representing Au-As-Sb 
anomalies) and PC2 of the clr-transformed data 
(representing Au-As-Sb anomalies) and 
negated PC1scores of the ilr-transformed data 
(representing Au-Cu anomalies)  (Table 3) can

Fig.5. Biplots of the first two PCs for the log-, alr-, clr – and ilr- transformed data using classical PCA.
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Fig.6. PC scores vs. area plots of anomalous multi-elements of log-, alr-, clr- and ilr- transformed 
          multi-element data and the corresponding classified anomaly maps according to inflection points of 
          concentration-area plots (solid dots) along straight-line segments fitted through the plots. L=low, 
          H=high, EH=extremely high.

be divided into five classes according to four 
inflection points in the C-A plots (Fig. 6).  
These five classes are considered, with respect 
to the known Au deposit occurrences, to show 

low-background, high-background, low-
anomaly, high-anomaly and extremely high-
anomaly (Fig. 6).
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 The anomaly maps obtained from the log- 
and alr- transformed multi-element data are 
similar to each other but the area of anomalies 
in alr-transformed multi-element map is more 
than the area of anomalies in log-transformed 
multi-element map. The anomaly maps 
obtained from the clr- and ilr- transformed 
multi-element data are also strongly similar to 
each other. Anomalies in the first maps are quite 
different from those in the latter maps (Fig. 7). 
For comparison with the ground-truth anomaly 
map (Fig. 3), the anomaly classes are re-
classified into a single anomaly class and the 
background classes. The anomaly maps of the 
clr- and ilr-transformed multi-element data 
have higher OAs and the lower T2Es than those 
obtained from the log- and alr-transformed 
multi-element data (Table 4). Accordingly, the 
values of OA for the anomaly maps based on 
log-, alr-, clr-, and ilr- transformed multi-

element data are 0.63, 0.74, 0.90 and 0.90, 
respectively (Table 4).

4. Conclusion

 Geochemical data are compositional and 
thereby closed data. Mathematically they 
define points in the Aitchison geometry on the 
simplex and not in the usual Euclidean space for 
which all classical statistical methods are 
designed. For this reason, all calculations 
which are based on Euclidean distances give 
misleading results.

 The obtained results of OA values, showed 
that logratio (alr, clr, or ilr) transformations, 
compared to log-transformation of stream 
sediment geochemical data improve mapping 
of Au anomalies reflecting presence of 
mineralization. In particular, clr- or ilr-

Table 4. Overall accuracy (OA), Type I and Type II errors (T1E and T2E, respectively) with respect to
              ground-truth background-anomaly map (Fig.3) of binary background-anomaly maps obtained from 
              PC analysis of ln-, alr-, clr- and ilr-transformed Au data. Values in the matrix are number of samples
              of overlap condition between two binary anomaly-background maps.

These indicate that either the clr- or ilr- transformed multi-element data are suitable and sufficient for
mapping of multi-element anomalies using the C-A fractal analysis, so, these transformations result in the
optimum mapping of multi-element anomalies using the C-A fractal analysis.
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transformed stream sediment geochemical data 
generally result in the best anomaly maps of Au 
in the study area.  

 Also, the results of the study imply that in 
regional-scale stream sediment geochemical 
survey, applying either log- or alr-transformed 
data is prone to miss significant multi-element 
anomalies and stream sediment geochemical 
data should be clr- or ilr-transformed to 
enhance recognition of anomalous multi-
element associations reflecting the presence of 
mineralization. This is a crucial merit because 
variations in trace element concentrations in 
regional-scale stream sediment geochemical 
data are mostly due to lithology and other 
factors  or  processes  unrelated  to 
mineralization.
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