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Abstract 

The detrimental effects of droughts on water resources and agriculture can lead to 

significant economic losses and risk to lives. Using key climatic factors to analyze changes in 

a relevant index, this study aims to forecast droughts. The study is structured into three distinct 

phases. First, the computation of the Standardized Precipitation Evapotranspiration Index 

(SPEI) for the Chitral and Swat River basins was carried out using data from 1981 to 2022. 

This index is designed to predict both short-term and long-term droughts. Second, the dataset 

was split into training and testing sets, with 80% designated for training and 20% for testing 

the models, employing algorithms such as XGBoost, Decision Tree, AdaBoost, and Linear 

Regression, along with various climate variables. Finally, the models were evaluated using 

statistical metrics like R² (Coefficient of Determination), RMSE (Root Mean Square Error), 

MAE (Mean Absolute Error), and MSE (Mean Squared Error), and future predictions from 

2023 to 2045 were made based on the well-trained and tested models. The results demonstrate 

promising performance, with R² values of 0.968, 0.906, 0.901, and 0.287, and RMSE values 

of 0.265, 0.291, 0.302, and 0.837 for XGBoost, AdaBoost, Decision Tree, and Linear 

Regression, respectively. The SPEI shows potential as a useful tool for drought prediction, and 

spatial distribution mapping in ArcMap using the Inverse Distance Weighting method reveals 

persistent moderate droughts in both basins. Additional research using a larger dataset or 

combining data from different areas could enhance the applicability of the findings and lead to 

a deeper understanding.  
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1. Introduction 

Extreme climatic events have become 

more frequent and destructive in recent 

decades, posing serious threats to global 

ecosystems and economic stability. 

Monitoring and assessing land changes are 

essential for understanding and reducing the 

impacts of these phenomena (Omali, 2022). 

Among these hazards, drought is known as 

one of the most economically and 

environmentally damaging yet poorly 

understood natural disasters, especially in 

Central and South Asia (Orimoloye et al., 

2022). The Emergency Events Database 

ranks drought as the top natural hazard in 

terms of total economic loss and societal 

disruption, with forecasts suggesting its 

frequency and severity will rise due to 

human-induced climate change (Teutschbein 

et al., 2023). Despite extensive research on 

drought effects, a universally accepted 

definition has yet to be established because of 

its spatial variability and dependence on 

context (Lloyd-Hughes, 2014). Drought-

related disturbances in water and ecological 

systems can have long-lasting effects, 

worsening vulnerabilities when multiple 
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droughts happen without sufficient recovery 

time (Yao et al., 2022). Understanding 

drought patterns, including their start, length, 

and end, is key to developing effective 

mitigation and better water resource 

management.  

Drought recovery is the time taken by 

an ecosystem to revert to its pre-drought 

condition. A clearer understanding of the 

likelihood, timing, and causes of drought 

termination would greatly assist decision-

makers in managing the shift from drought 

conditions to restored water availability. 

Drought is typically classified into three 

broad categories: meteorological, 

hydrological, and agricultural. 

Meteorological drought refers to an 

observable shortfall in rainfall, while 

hydrological drought involves reduced water 

levels in surface and underground reservoirs 

(DeChant and Moradkhani, 2015). 

Agricultural drought is characterized by 

inadequate soil moisture, insufficient rainfall, 

and depleted groundwater levels, ultimately 

leading to reduced crop yields. While 

physical and conceptual models play a 

significant role in analyzing catchment 

behavior, they are frequently criticized for 

their complexity, high data demands, and 

limited forecasting accuracy (Raposo et al., 

2023). In response to these challenges, 

various disciplines have increasingly adopted 

machine learning techniques in recent years 

to tackle the identified issues. These include, 

but are not limited to, engineering, 

agriculture, medicine, marketing, earth and 

environmental sciences, and marketing 

(Benos et al., 2021). Another challenge in 

drought prediction lies in selecting and 

developing a suitable forecasting model. A 

range of models has been employed in the 

past to estimate drought occurrence and 

severity, including ARIMA/SARIMA, neural 

networks, and hybrid approaches. ARIMA, in 

particular, is a straightforward and widely 

used technique for predicting droughts in 

individual locations, relying solely on the 

time series' internal characteristics without 

considering the influence of external 

predictors (Rezaiy and Shabri, 2023). ANN 

has significantly contributed across various 

fields by effectively modeling the nonlinear 

relationships between predictors and target 

variables. However, they face several 

limitations, including challenges in handling 

high-dimensional data, sensitivity to 

irrelevant features, limited interpretability, 

and issues related to computational efficiency 

(Setiono et al., 2002). Specifically, 

backpropagation NN, a widely used model, is 

prone to getting trapped in local minima 

while attempting to solve for the global 

optimum of complex nonlinear functions, 

often resulting in unsuccessful training 

(Duffner and Garcia, 2007). 

In recent years, significant efforts 

have been made toward drought prediction, 

focusing on the selection and accessibility of 

forecasting tools. The use of remote sensing 

products, like the NDVI, has enhanced 

drought forecasting due to their precise 

spatial and temporal data at both regional and 

global levels (Marj and Meijerink, 2011). 

Furthermore, drought prediction has 

increasingly incorporated various human 

activities, which are difficult to quantify. 

These activities include reservoir operations, 

irrigation, land use changes, and 

deforestation. In conditions with limited 

predictive accuracy, probabilistic drought 

forecasting is being widely adopted to 

support decision-making. A strong focus is 

placed on deriving the probability density 

function of forecasts and estimating the 

chances of experiencing different drought 

categories (Nandgude et al., 2023).  In 

addition to forecasting drought signals using 

different indicators, some approaches aim to 

directly predict drought impacts on society 

and ecosystems. Inventories of drought 

impacts—ranging from agriculture to water 

quality—have been developed. Although 

these initiatives have improved drought 

forecasting to some extent, it remains a 

significant challenge for climatologists, 

hydrologists, and policymakers due to its 

complex origins and occurrence across 

varying temporal and spatial scales (Hao et 

al., 2018; Tramblay et al., 2020). 
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The Kabul River Basin, especially the 

Chitral and Swat River Basins, is very 

vulnerable to repeated droughts, which have 

become worse in both severity and frequency 

over the past few decades. This vulnerability 

is made worse by climate forecasts showing a 

significant drop in rainfall and a rise in 

temperature at the same time (Khattak et al., 

2017). By 2100, yearly rainfall in the area is 

expected to fall by 53–65%, while average 

yearly temperatures are forecast to rise by 

1.8°C, 3.5°C, and 4.8°C in the 2020s, 2050s, 

and 2080s, respectively (Sidiqi et al., 2023). 

These expected climate changes create 

serious challenges for water resources, 

farming, and overall ecosystem health (Ali et 

al., 2015). 

To address this critical issue, this 

study aims to develop robust predictive 

models for the SPEI in the Chitral and Swat 

River Basins using historical climate data 

spanning from 1981 to 2020. Given the 

increasing hydrological uncertainties in the 

region, a comparative analysis of multiple 

ML models, including XGBoost, Decision 

Trees, AdaBoost, and Linear Regression, is 

conducted to forecast SPEI at 3- and 6-month 

lead times. The rationale for selecting these 

models lies in their demonstrated efficacy in 

capturing complex drought patterns while 

balancing predictive accuracy, computational 

efficiency, and interpretability. By leveraging 

ML-driven insights, this research seeks to 

advance drought early warning systems, 

inform adaptive water resource management 

strategies, and enhance regional resilience to 

climate-induced hydrological stress. 

2. Study Area 

The Chitral River Basin and Swat 

River Basin (C&SRB) are geographically 

located within the latitude range of 34°06’N 

to 36°50’N and the longitude range of 

69°50’E to 72°51’E. They cover an 

approximate area of 26,382 km² (Fig. 1). 

Situated in the northwest corner of Pakistan 

and extending into the eastern part of 

Afghanistan, this geographical area is 

characterised by its hilly topography. The 

basin varies in altitude from 277 metres in 

Nowshera to 7701 metres in Afghanistan 

(Syed et al., 2022). C&SRB experiences 

frigid winters and seven months of heavy 

rainfall (November–May), which are 

succeeded by warm summers with little to no 

rainfall and stream flow, with the exception 

of rivers and streams nourished by glaciers 

and snowmelt (Khan et al., 2022). The 

variation in altitude within the basin causes 

substantial disparities in precipitation 

throughout the area (Ali et al., 2018). The 

basin's climate is characterised by frigid 

winters (November–May) that receive 

substantial precipitation, followed by hot 

summers (June–August) that receive 

negligible or no precipitation. The majority of 

streamflow is produced by the thawing of 

glaciers or snow.  Variations in elevation 

within this river basin contribute significantly 

to the disparity in precipitation levels. The 

river ultimately empties into the Indus River 

Basin at Nowshera (Iqbal et al., 2018). 

3. Materials and Methods 

3.1 Historical Data  

Monthly data on rainfall, maximum 

and minimum temperature were sourced from 

the Pakistan Meteorological Department 

(PMD) for stations located in Chitral, Drosh, 

Dir, and Saidu Sharif, covering the period 

from 1981 to 2022 (Table 1). The CMIP6, as 

outlined by Eyring et al. (2016), the sixth 

phase of the Coupled Model Intercomparison 

Project, initiated by the WCRP, includes 

approximately 100 distinct global climate 

models developed by 49 modelling groups, 

and is based on the framework of SSPs (Moss 

et al., 2010). These SSPs define a range of 

socioeconomic baseline scenarios. In CMIP6, 

they are integrated with RCPs to form a 

comprehensive set of future scenarios (van 

Vuuren et al., 2014). This study utilizes 

temperature and precipitation data from five 

GCMs involved in CMIP6. The models are 

detailed in Table 2. 
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Fig. 1. Geographical location of the study area (Chitral and Swat River Basin (C&SRB)). 

Table 1: Geographic and climatic characteristics of met-stations 

Station 

Name 

Latitude (N) Longitude 

(E) 

Elevation 

(m) 

Mean annual 

rainfall (mm) 

Chitral 71˚44’50" 35˚49’34" 2130 477.6 

Dir 71˚51’37" 35˚11’33" 1650 1342.1 

Drosh 71˚46’46" 35˚26’40" 2230 756.7 

Saidu Sharif 72˚21’38" 34˚44’58" 1050 1028.4 

 

Table 2: A list of five global climate models chosen for initial analysis to identify the best-

performing models for the study area is provided below. 

No. CMIP6 GCM  Country Resolution (lon × lat) in degrees 

1 ACCESS-ESM1-5 Australia 0.25° × 0.25° 

2 GFDL-CM4 USA 0.25° × 0.25° 

3 IPSL-CM6A-LR France 0.25° × 0.25° 

4 MPI-ESM1-2-HR Germany 0.25° × 0.25° 

5 NorESM2-MM Norway 0.25° × 0.25° 

 

Downscaled climate projections from 

the CMIP6 were incorporated into the NASA 

NEX-GDDP dataset, from which rainfall and 

temperature data were extracted for this 

study. Projections from 21 Global Climate 

Models (GCMs) under two scenarios—

SSP2-4.5 (SSP245) and SSP5-8.5 

(SSP585)—were utilized. Specifically, 

precipitation data for the period 2023–2045 

were obtained from the NEX-GDDP dataset 

using the GCM developed by the CSIRO. 

CMIP6, initiated by the WCRP, features 



52 

around 100 unique GCMs developed by 49 

modelling teams, integrating RCPs with 

SSPs.  

In order to assure the choice of the 

most appropriate climate models for each of 

the scenarios 2 and 5, five models were 

evaluated according to their proficiency in 

reproducing current and recently passed 

climate conditions. The past-performance 

approach, which is utilised for this selection 

process, takes into account variables 

including temperature and precipitation that 

are considered to be the most pertinent to the 

objectives of this study's climate change 

impact assessment. To enhance the 

correspondence between climate model 

outputs and observations, bias correction 

methods were implemented, including 

distributive mapping and scaling model 

outputs. This was especially crucial for 

applications that are susceptible to biases, 

such as hydrological and land surface 

modelling. By rectifying biases in the mean 

and variance of model-simulated fields, these 

techniques guarantee that the projections 

more accurately depict extreme values. 

Bias correction is performed utilising 

historical data and the CmHyd utility. The 

mean outcomes of bias correction for all 

models, including the optimal model 

ACCESS-ESM1-5 that utilises observed 

station data, are displayed in Table 3. The 

most optimal outcomes are attained via 

distributive mapping of precipitation and 

temperature. 

Table 3: Results of the best model for future 

data 

Meteorological 

Data 

Before 

Bias-

correction 

After Bias-

correction 

Precipitation R2 = 0.07 
RMSE = 

9.11 mm 

R2 = 0.913 

RMSE = 

6.427 mm 

Maximum 

Temperature 

R2 = 0.58 

RMSE = 

11.2 °C 

R2 = 0.931 

RMSE = 

0.271 °C 

Minimum 

Temperature 

R2 = 0.58 

RMSE = 

7.97 °C 

R2 = 0.929 

RMSE = 

0.231 °C 

 

3.2 Standardized Precipitation 

Evapotranspiration Index (SPEI) 

With over 150 drought indices 

documented in the literature, validating each 

one and achieving a universal consensus is 

impractical. However, there is a growing 

consensus on the use of the SPEI in recent 

years. This preference is largely due to 

SPEI's integration of both rainfall and 

temperature data. The SPEI is computed by 

initially determining the monthly water 

balance, which is the difference between 

monthly rainfall and monthly PET. 

These values are then aggregated 

over the specified timescales of interest. 

Calculating PET involves several 

parameters, such as surface temperature, 

humidity, solar radiation intensity on the 

earth's surface, and sensible heat fluxes. 

However, such detailed meteorological data 

are often unavailable from many 

meteorological stations worldwide. 

Therefore, various indirect methods, 

including the Penman-Monteith, Hargreaves, 

and Thornthwaite methods, have been 

suggested to estimate it using available 

meteorological data. In this study, the 

Hargreaves method was employed for PET 

calculation due to data unavailability, which 

requires maximum and minimum 

temperatures and the latitude. The SPEI and 

PET were calculated using the RStudio 

package "SPEI version 1.8.1". The SPEI 

values and their corresponding drought 

categories, as defined by the WMO (2012), 

are presented in Table 4. 

Table 4: Drought and wet categories based 

on SPEI values 

SPEI values Categories 

>02 Extremely wet 

1.5 to 1.99 Very Wet 

1.0 to 1.49 Moderately Wet 

-0.99 to 0.99 Near Normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely drought 

< -02 Extremely drought 
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3.3 Extreme Gradient Boosting 

(XGBOOST) Model 

The XGBoost algorithm, an advanced 

version of the GBM, is an influential and 

efficient ML technique based on regression 

trees. It uses a boosting structure, where 

several weak learners are successively 

trained to minimize the errors of their 

predecessors, resulting in a strong predictive 

model. XGBoost addresses common 

machine learning challenges such as 

overfitting and underfitting through 

regularization and advanced optimization 

strategies, making it suitable for complex 

problems and large datasets. In this study, we 

applied XGBoost with 4000 trees, a 

maximum depth of 20, and a learning rate of 

0.1, while keeping the remaining 

hyperparameters at their default settings. To 

further optimize model performance, we 

employed Optuna for hyperparameter tuning, 

running trials at 100, 500, 1000, and 2000 

iterations. The tuning process explored 

various combinations of tree numbers (100 to 

4000), maximum depths (1 to 22), and 

learning rates (0.05, 0.1, and 0.5). This 

comprehensive approach allowed us to fine-

tune the XGBoost model effectively, 

ensuring it was well-adapted to the specific 

characteristics of the dataset and the 

complexity of the drought prediction task. 

3.4 Tree Algorithms (DT) Model 

The tree-based model, widely used in 

machine learning, functions by partitioning 

the input space into smaller regions and 

conveying prediction values to each, 

allowing it to effectively capture complex 

patterns in the data. In gradient boosting 

frameworks like XGBoost, trees are built 

sequentially, with each new tree trained to 

minimize the residuals from the earlier 

iteration. This iterative refinement enhances 

the model’s predictive accuracy. Tree-based 

models are highly flexible, capable of 

handling various data types, capturing non-

linear relationships, and demonstrating 

robustness against outliers. In our study, a 

Decision Tree model was trained using 4000 

trees with a maximum depth of 25. To further 

optimize model performance, we applied 

Optuna for hyperparameter tuning, 

conducting 100, 200, 500, 1000, and 2000 

trials. The tuning process explored different 

configurations of tree counts (ranging from 

100 to 4000) and maximum depths (from 1 to 

25). This comprehensive tuning strategy 

allowed us to tailor the Decision Tree model 

to the unique characteristics of the dataset 

and the complexity of the drought prediction 

task. 

3.5 Adaptive Boosting (AdaBoost) Model 

AdaBoost is a machine learning 

algorithm that conglomerates several weak 

learners to form a robust predictive model. It 

works by training weak learners—typically 

decision trees—sequentially, where each 

new learner focuses more on the instances 

that were misclassified by the previous ones. 

This adaptive weighting mechanism enables 

the model to iteratively improve its accuracy 

by learning from prior errors. AdaBoost is 

especially effective for binary classification 

and regression tasks, demonstrating strong 

performance even on complex datasets. It is 

also relatively resistant to overfitting, making 

it a reliable choice in practical applications. 

In our implementation, we used a decision 

tree as the base estimator, with six estimators 

in total. For classification, we employed the 

"SAMME.R" algorithm, and for regression 

tasks, we used squared loss. All other 

hyperparameters were kept at their default 

settings. This tailored configuration allowed 

us to harness the strengths of AdaBoost while 

adapting it to the specific requirements of our 

dataset, ultimately enhancing the model's 

predictive capability. 

3.6 Linear Regression Model 

Linear regression is a vital technique 

widely used for predictive analysis. It models 

the connection between a dependent variable 

and one or more independent variables by an 

appropriate linear equation that reduces the 

sum of squared differences between the 

actual and predicted values. The model 

attains this by assessing coefficients that best 

describe the linear association, making it a 

simple yet powerful tool for tasks such as 
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trend analysis, impact assessment of 

variables, and forecasting. Its interpretability 

and ease of implementation make it a 

foundational model for more advanced 

techniques. In our study, we also 

implemented Elastic Net Regression with an 

α value of 0.0001, an L1:L2 ratio of 

0.99:0.01, and the intercept fitting enabled. 

Elastic Net combines the strengths of both L1 

(Lasso) and L2 (Ridge) regularization 

methods, offering a balanced approach that 

promotes sparsity while maintaining model 

stability. This regularization helped improve 

the model’s generalization performance by 

reducing the risk of overfitting, thereby 

enhancing its applicability to the drought 

prediction task. 

3.7 Model Evaluation 

To evaluate predictive models, 

several criteria are employed, including R-

squared (R²), RMSE, MAE, and MSE. R-

squared signifies the proportion of variance 

in the dependent variable that is explained by 

the independent variables, with a value of 1 

representing a perfect fit. RMSE and MAE 

measure the average deviance between 

predicted and actual values, with lower 

values portentous better performance. While 

RMSE gives more weight to larger errors, 

MAE treats all errors with equal prominence. 

MSE, similar to RMSE but without taking 

the square root, reproduces the average of the 

squared errors. These metrics are decisive for 

evaluating a model's accuracy, precision, and 

ability to generalize to new data. 

4. Results 

The SPEI was calculated in RStudio 

using the SPEI package for the historical 

period from 1981 to 2022. Additionally, PET 

was calculated using the Hargreaves formula. 

These computations were extended to the 

future period from 2023 to 2045 for SSP245 

and SSP585. SPEI-3 and SPEI-6 calculations 

and predictions have been implemented for 

all meteorological stations. The following 

provides detailed information for a 

representative station of the study area. 

4.1 DIR 

The analysis of drought episodes 

discloses distinct patterns over the years. 

Notably, in 1989, 2007, 2009, and 2022, the 

region faced extreme drought conditions, 

marked by significantly below-average 

precipitation levels or higher-than-normal 

temperatures, resulting in prolonged water 

scarcity and agricultural stress.  

Conversely, the period between 1986 

and 1987 experienced relatively few drought 

episodes, suggesting a temporary relief from 

severe drought conditions, likely due to 

higher-than-average rainfall. However, this 

respite was brief, as the region encountered 

repeated drought episodes in subsequent 

years, as shown in Figure 2. 

 

Fig. 2. Historical drought (1981-2022). 
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The recurring nature of drought 

episodes highlights the vulnerability of the 

region to climatic fluctuations. Grasping 

these patterns is essential for developing 

effective drought mitigation strategies and 

enhancing the resilience of communities and 

ecosystems against future drought events. 

In the realm of climate impact 

assessments, the efficacy of predictive 

models plays a pivotal role in elucidating 

future climatic scenarios. For the SSP245 

scenario, the Gradient Boosting model 

demonstrated moderate accuracy, yielding an 

RMSE of 0.225 and an R2 of 0.926. While 

these metrics indicate a reasonable alignment 

between predicted and observed SPEI values, 

there exists scope for further refinement. On 

the other hand, the AdaBoost and Tree 

models exhibited acceptable performance, 

with RMSE values of 0.218 and 0.343, 

respectively. Despite providing relatively 

accurate predictions, they fell short of the 

precision achieved by the Gradient Boosting 

model. Conversely, the Linear Regression 

model displayed poor performance, 

recording an RMSE of 0.826 and an R2 close 

to zero, underscoring its inadequacy in 

accurately forecasting SPEI values under this 

scenario. The future time series prediction is 

shown in Figure 3. 

On the contrary, the SSP585 scenario 

observed that the Gradient Boosting model 

achieved exceptional accuracy, as evidenced 

by its RMSE of 0.105 and R2 of 0.983. The 

metrics indicate a strong correlation between 

the model's predictions and the observed 

SPEI values, which provides further 

evidence of its reliable predictive 

capabilities. In a similar vein, the AdaBoost 

and Tree models performed admirably, as 

evidenced by their respective RMSE values 

of 0.150 and 0.123, which validated their 

ability to provide precise predictions for the 

SSP585 scenario. However, the Linear 

Regression model encountered difficulties in 

accurately predicting SPEI values for this 

scenario, as evidenced by its RMSE of 0.791 

and R2 of 0.070. In summary, the results of 

this study emphasise the importance of 

incorporating sophisticated modelling 

methods, like Gradient Boosting, into climate 

impact assessments due to their superior 

predictive capabilities compared to 

conventional Linear Regression models. All 

ML models and their time series prediction is 

shown in Figure4.  

4.2 Spatial Analysis 

The Inverse Distance Weighting 

(IDW) technique was employed to visualize 

drought conditions across the study region. 

IDW is an interpolation method that 

approximates unknown values at locations 

established on the values of close known 

points, assuming that nearer points have 

more influence than those farther away. 

Specifically, IDW was applied to identify 

and illustrate the months during which all 

stations experienced drought conditions, 

indicated by SPEI values less than 0. These 

figures exclusively present the SPEI-3 and 

SPEI-6 values, which reflect short- and 

medium-term droughts, respectively. The 

contours displayed on the maps represent 

interpolated SPEI values with a fixed interval 

of 0.1, indicating the intensity and spatial 

spread of drought across the region. The 

spatial maps offer a clearer representation of 

meteorological drought intensity under 

different future climate scenarios. Figure 

5(a,b) shows drought months for SSP245, 

while Figure 6(a,b) shows drought months 

for SSP585. 

4.3 Future drought analysis 

Understanding future droughts is 

crucial for planning effective strategies to 

minimize their impact on agriculture, the 

environment, and ecosystems. Knowledge of 

their intensity and duration allows for 

informed decision-making to mitigate these 

adverse effects. Tables 5 and 6 show the three 

maximum drought durations of all stations 

for SSP245 and SSP585, respectively. 

The drought scenarios under SSP585 

are projected to be more prolonged and 

intense compared to those under SSP245, 

largely due to rising temperatures. 

Specifically, at Chitral station, the maximum 

drought duration is anticipated to be 9 
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months under SSP245, whereas it extends to 

11 months under SSP585. Similarly, the Dir 

station exhibits a maximum drought duration 

of 9 months for SSP585, compared to 8 

months for SSP245. Interestingly, Drosh and 

Saidu Sharif stations show a higher drought 

duration under SSP245 compared to SSP585. 

Saidu Sharif station is particularly notable, 

facing the worst drought conditions with a 

staggering 40 months of drought under 

SSP585, the longest duration observed across 

all stations for the entire future period. 

These findings highlight significant 

regional variations in drought intensity and 

duration under different climate scenarios. 

The higher temperatures projected in SSP585 

contribute to more severe drought conditions, 

exacerbating water scarcity issues. The 

extended drought periods at Chitral and Dir 

stations under SSP585 indicate heightened 

vulnerability, necessitating targeted water 

management strategies. Conversely, the 

unexpectedly higher drought duration at 

Drosh and Saidu Sharif stations under 

SSP245 suggests that factors other than 

temperature, such as precipitation patterns 

and local climatic conditions, also play 

crucial roles in drought dynamics. 

 
Fig. 3. Future drought prediction of Models for SSP245 (2023-2045). 
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Fig. 3 (continue 

5. Discussion 

The primary objective of this research 

was to apply machine learning models—

namely AdaBoost, Decision Tree, XGBoost, 

and Linear Regression—to forecast the 

SPEI-3 and SPEI-6 for the Chitral and Swat 

River Basins. While the results indicated that 

all models delivered reasonable accuracy, a 

more critical evaluation revealed substantial 

disparities in model performance, 

particularly in capturing complex drought 

dynamics in these high-altitude, data-scarce 

regions. 

The study’s comparative analysis, using 

evaluation parameters such as R², RMSE, 

MAE, and MSE, suggested that although all 

models performed adequately, the Decision 

Tree and Linear Regression models 

underperformed relative to ensemble-based 

methods. This reinforced the well-

documented limitations of standalone tree 

models in handling non-linear, multi-

dimensional relationships typical in climate 

datasets. AdaBoost demonstrated moderate 

performance improvements by adaptively 

focusing on misclassified instances, yet it fell 

short of the robustness and generalization 

ability exhibited by XGBoost. 
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Fig. 4. Future drought prediction of Models for SSP585 (2023-2045). 

 

Fig. 4 (continue) 
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Table 5: Drought duration for SSP245 

SPEI Station Start End Duration 

(months) 

Intensity 

SPEI-3 Chitral May-2037 Feb-2038 9 -1.67 

Jan-2030 Sep-2030 8 -1.56 

Feb-2023 Sep-2023 7 -0.93 

Dir Jul-2027 Jan-2028 6 -1.25 

Dec-2029 Mar-2030 3 -0.94 

Aug-2030 Nov-2030 3 -1.50 

Drosh Feb-2023 Jun-2023 4 -0.60 

Nov-2037 Feb-2038 3 -1.30 

Oct-2027 Dec-2027 2 -0.58 

Saidu 

Sharif 

Jul-2027 Jan-2028 6 -1.05 

Dec-2029 Jun-2030 6 -1.54 

Dec-2038 Jun-2039 6 -0.95 

SPEI-6 Chitral Jan-2024 Mar-2025 14 -1.19 

Oct-2043 Aug-2044 10 -1.01 

Feb-2023 Nov-2023 9 -0.83 

Dir Nov-2037 Apr-2038 5 -1.00 

Oct-2043 Mar-2044 5 -0.68 

Dec-2029 Apr-2030 4 -0.62 

Drosh Apr-2023 Jul-2023 3 -0.59 

Dec-2037 Feb-2038 2 -0.69 

Jan-2044 Mar-2044 2 -0.36 

Saidu 

Sharif 

Feb-2039 Dec-2039 10 -0.88 

Jan-2030 Aug-2030 7 -1.44 

Nov-2037 Apr-2038 5 -1.39 

Table 6: Drought duration for SSP585 

SPEI Station Start End Duration 

(months) 

Intensity 

SPEI-3 Chitral Feb-2036 Jan-2037 11 -1.13 
Sep-2030 Jun-2031 9 -0.95 

Jul-2039 Apr-2040 9 -1.15 

Dir Aug-2039 Apr-2040 8 -1.34 

Aug-2025 Mar-2026 7 -1.21 

Aug-2034 Jan-2035 5 -0.88 

Drosh Oct-2039 Apr-2040 6 -0.72 

Nov-2025 Mar-2026 4 -1.05 

Aug-2036 Dec-2036 4 -0.63 

Saidu 

Sharif 

Apr-2027 Feb-2028 10 -1.41 

Oct-2031 May-2032 7 -1.59 

Jun-2023 Dec-2023 6 -1.03 

SPEI-6 Chitral Aug-2039 Aug-2040 12 -1.13 

Nov-2025 Oct-2026 11 -1.52 

Feb-2036 Jan-2037 11 -1.11 

Dir Feb-2034 Feb-2035 12 -0.92 

Feb-2036 Jan-2037 11 -1.60 

Feb-2029 Oct-2029 8 -0.85 

Drosh Mar-2036 Dec-2036 9 -0.41 

Apr-2032 Sep-2032 5 -0.36 

Dec-2039 Apr-2040 4 -0.61 

Saidu 

Sharif 

May-2025 Sep-2028 40 -1.79 

Apr-2040 Apr-2041 12 -1.53 

Sep-2023 Aug-2024 11 -1.09 
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Fig. 5a. SPEI-3 for SSP245 
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Fig. 5b. SPEI-6 for SSP245 
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Fig. 6a. SPEI-3 for SSP585 
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Fig. 6b. SPEI-6 for SSP585 
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XGBoost emerged as the most 

reliable model, consistently outperforming 

others across both short-term (SPEI-3) and 

mid-term (SPEI-6) drought predictions. Its 

superior accuracy underscores the advantage 

of using gradient boosting frameworks that 

incorporate regularization and advanced 

optimization techniques to handle noise, 

overfitting, and data heterogeneity. These 

findings align with previous work by Khan et 

al. (2024), who demonstrated that XGBoost 

achieved the highest predictive accuracy for 

drought forecasting in the Kabul River Basin. 

Moreover, XGBoost was successfully 

employed for inflow prediction into the 

Tarbela Reservoir by Jan et al. (2024). It 

delivered exceptional forecasting 

performance, further validating its efficacy 

for hydrological modelling in complex 

terrains. 

As an additional point of interest, the 

findings of the study suggest that, according 

to the SPEI, the years 2027, 2030, 2035, 

2037, 2038, and 2044 will be characterised 

by mild drought conditions. This highlights 

the significance of this type of research in 

terms of understanding and forecasting 

climatic events for the purpose of improving 

planning and methodologies for mitigating 

their effects. 

The historical drought patterns 

identified in this study show strong 

alignment with previous research, 

reinforcing the reliability of our findings. For 

example, Rahman et al. (2021) recounted 

drought events in 1972, 1988, 2000, 2001, 

2002, 2006, and 2017 using the SPEI-12 

index in the KPK region, periods that closely 

correspond to those detected in our analysis. 

Also, Sidiqi et al. (2023) identified drought 

in 2019 and 2020 using the SPI and RDI 

indices, which are consistent with our results 

across all stations during the same years. 

Alami et al. (2017) perceived extreme 

drought in 2001, severe drought in 2000, and 

moderate drought in 2003–2004, closely 

identical to our results of extreme drought in 

2001 and severe to moderate situations from 

August to December 2003. Baig et al. (2020) 

also reported agricultural drought in 2000, 

2001, 2002, and 2004 using the SDCI index, 

years that correspond with our identification 

of extreme drought in 2001 and moderate 

droughts in 2000, 2002, and 2004. 

Furthermore, Taraky et al. (2021) noted 

moderate hydrological drought in 2001 and 

2002 using the SSI index, while our findings 

suggest more severe drought conditions 

during those years, which are supported by 

other researchers as well. These consistent 

observations across multiple studies 

underscore the robustness and credibility of 

our analysis in capturing historical drought 

events in the region. 

The SPI and RDI (Sidiqi et al., 2023) 

show drought in the years 2026, 2037–2038, 

and 2043. Likewise, our results show drought 

during these periods, with moderately dry 

years in 2024, 2025, 2027–2030, 2035, and 

2038–2040. Severe drought events are 

expected in years including 2030 and 2038. 

6. Conclusion 

This study assessed the applicability 

of ML models in forecasting meteorological 

droughts in the Chitral and Swat River Basins 

using the SPEI. By integrating long-term 

climatic data from 1981 to 2022 and 

employing advanced algorithms—including 

XGBoost, AdaBoost, Decision Tree, and 

Linear Regression—the research 

demonstrated that ensemble-based models, 

particularly XGBoost, provided superior 

predictive performance. The results 

highlighted XGBoost’s strong ability to 

model non-linear climate relationships, with 

an R² of 0.968 and RMSE of 0.265, 

outperforming other methods significantly. 

Spatial distribution maps further indicated 

persistent moderate drought patterns across 

both basins, emphasizing the importance of 

localized drought monitoring. The findings 

underscore the utility of machine learning in 

drought forecasting and support the 

integration of such models into early warning 

systems and regional water resource 

planning. Future studies incorporating 

broader datasets and additional geographic 

regions could further improve the 



65 

generalizability and accuracy of these 

predictive tools. 
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