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Abstract

The detrimental effects of droughts on water resources and agriculture can lead to
significant economic losses and risk to lives. Using key climatic factors to analyze changes in
a relevant index, this study aims to forecast droughts. The study is structured into three distinct
phases. First, the computation of the Standardized Precipitation Evapotranspiration Index
(SPEI) for the Chitral and Swat River basins was carried out using data from 1981 to 2022.
This index is designed to predict both short-term and long-term droughts. Second, the dataset
was split into training and testing sets, with 80% designated for training and 20% for testing
the models, employing algorithms such as XGBoost, Decision Tree, AdaBoost, and Linear
Regression, along with various climate variables. Finally, the models were evaluated using
statistical metrics like R? (Coefficient of Determination), RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), and MSE (Mean Squared Error), and future predictions from
2023 to 2045 were made based on the well-trained and tested models. The results demonstrate
promising performance, with R? values of 0.968, 0.906, 0.901, and 0.287, and RMSE values
of 0.265, 0.291, 0.302, and 0.837 for XGBoost, AdaBoost, Decision Tree, and Linear
Regression, respectively. The SPEI shows potential as a useful tool for drought prediction, and
spatial distribution mapping in ArcMap using the Inverse Distance Weighting method reveals
persistent moderate droughts in both basins. Additional research using a larger dataset or
combining data from different areas could enhance the applicability of the findings and lead to
a deeper understanding.
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2022). The Emergency Events Database
ranks drought as the top natural hazard in

Extreme climatic events have become  terms of total economic loss and societal
more frequent and destructive in recent disruption’ with forecasts Suggesting its
decades, posing serious threats to global frequency and severity will rise due to
ecosystems ~ and  economic  stability.  human-induced climate change (Teutschbein
Monitoring and assessing land changes are et al., 2023). Despite extensive research on
essential for understanding and reducing the  drought effects, a universally accepted
impacts of these phenomena (Omali, 2022).  definition has yet to be established because of
Among these hazards, drought is known as  jts spatial variability and dependence on
one of the most economically and context (Lloyd-Hughes, 2014). Drought-
environmentally ~ damaging yet poorly related disturbances in water and ecological
understood natural disasters, especially in  systems can have long-lasting effects,
Central and South Asia (Orimoloye et al.,  worsening vulnerabilities when multiple
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1. Introduction



droughts happen without sufficient recovery
time (Yao et al., 2022). Understanding
drought patterns, including their start, length,
and end, is key to developing effective
mitigation and better water resource
management.

Drought recovery is the time taken by
an ecosystem to revert to its pre-drought
condition. A clearer understanding of the
likelihood, timing, and causes of drought
termination would greatly assist decision-
makers in managing the shift from drought
conditions to restored water availability.
Drought is typically classified into three

broad categories: meteorological,
hydrological, and agricultural.
Meteorological drought refers to an
observable shortfall in rainfall, while

hydrological drought involves reduced water
levels in surface and underground reservoirs
(DeChant  and  Moradkhani,  2015).
Agricultural drought is characterized by
inadequate soil moisture, insufficient rainfall,
and depleted groundwater levels, ultimately
leading to reduced crop yields. While
physical and conceptual models play a
significant role in analyzing catchment
behavior, they are frequently criticized for
their complexity, high data demands, and
limited forecasting accuracy (Raposo et al.,
2023). In response to these challenges,
various disciplines have increasingly adopted
machine learning techniques in recent years
to tackle the identified issues. These include,
but are not limited to, engineering,
agriculture, medicine, marketing, earth and
environmental sciences, and marketing
(Benos et al., 2021). Another challenge in
drought prediction lies in selecting and
developing a suitable forecasting model. A
range of models has been employed in the
past to estimate drought occurrence and
severity, including ARIMA/SARIMA, neural
networks, and hybrid approaches. ARIMA, in
particular, is a straightforward and widely
used technique for predicting droughts in
individual locations, relying solely on the
time series' internal characteristics without
considering the influence of external
predictors (Rezaiy and Shabri, 2023). ANN

49

has significantly contributed across various
fields by effectively modeling the nonlinear
relationships between predictors and target
variables. However, they face several
limitations, including challenges in handling
high-dimensional  data, sensitivity to
irrelevant features, limited interpretability,
and issues related to computational efficiency
(Setiono et al., 2002). Specifically,
backpropagation NN, a widely used model, is
prone to getting trapped in local minima
while attempting to solve for the global
optimum of complex nonlinear functions,
often resulting in wunsuccessful training
(Duffner and Garcia, 2007).

In recent years, significant efforts
have been made toward drought prediction,
focusing on the selection and accessibility of
forecasting tools. The use of remote sensing
products, like the NDVI, has enhanced
drought forecasting due to their precise
spatial and temporal data at both regional and
global levels (Marj and Meijerink, 2011).
Furthermore,  drought prediction has
increasingly incorporated various human
activities, which are difficult to quantify.
These activities include reservoir operations,
irrigation, land use  changes, and
deforestation. In conditions with limited
predictive accuracy, probabilistic drought
forecasting is being widely adopted to
support decision-making. A strong focus is
placed on deriving the probability density
function of forecasts and estimating the
chances of experiencing different drought
categories (Nandgude et al., 2023). In
addition to forecasting drought signals using
different indicators, some approaches aim to
directly predict drought impacts on society
and ecosystems. Inventories of drought
impacts—ranging from agriculture to water
quality—have been developed. Although
these initiatives have improved drought
forecasting to some extent, it remains a
significant challenge for climatologists,
hydrologists, and policymakers due to its
complex origins and occurrence across
varying temporal and spatial scales (Hao et
al., 2018; Tramblay et al., 2020).



The Kabul River Basin, especially the
Chitral and Swat River Basins, is very
vulnerable to repeated droughts, which have
become worse in both severity and frequency
over the past few decades. This vulnerability
is made worse by climate forecasts showing a
significant drop in rainfall and a rise in
temperature at the same time (Khattak et al.,
2017). By 2100, yearly rainfall in the area is
expected to fall by 53—-65%, while average
yearly temperatures are forecast to rise by
1.8°C, 3.5°C, and 4.8°C in the 2020s, 2050s,
and 2080s, respectively (Sidiqi et al., 2023).
These expected climate changes create
serious challenges for water resources,
farming, and overall ecosystem health (Ali et
al., 2015).

To address this critical issue, this
study aims to develop robust predictive
models for the SPEI in the Chitral and Swat
River Basins using historical climate data
spanning from 1981 to 2020. Given the
increasing hydrological uncertainties in the
region, a comparative analysis of multiple
ML models, including XGBoost, Decision
Trees, AdaBoost, and Linear Regression, is
conducted to forecast SPEI at 3- and 6-month
lead times. The rationale for selecting these
models lies in their demonstrated efficacy in
capturing complex drought patterns while
balancing predictive accuracy, computational
efficiency, and interpretability. By leveraging
ML-driven insights, this research seeks to
advance drought early warning systems,
inform adaptive water resource management
strategies, and enhance regional resilience to
climate-induced hydrological stress.

2. Study Area

The Chitral River Basin and Swat
River Basin (C&SRB) are geographically
located within the latitude range of 34°06°’N
to 36°50’N and the longitude range of
69°50’E  to 72°51’E. They cover an
approximate area of 26,382 km? (Fig. 1).
Situated in the northwest corner of Pakistan
and extending into the eastern part of
Afghanistan, this geographical area is
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characterised by its hilly topography. The
basin varies in altitude from 277 metres in
Nowshera to 7701 metres in Afghanistan
(Syed et al., 2022). C&SRB experiences
frigid winters and seven months of heavy
rainfall (November—May), which are
succeeded by warm summers with little to no
rainfall and stream flow, with the exception
of rivers and streams nourished by glaciers
and snowmelt (Khan et al., 2022). The
variation in altitude within the basin causes
substantial ~ disparities in  precipitation
throughout the area (Ali et al., 2018). The
basin's climate is characterised by frigid
winters (November—May) that receive
substantial precipitation, followed by hot
summers  (June—August) that receive
negligible or no precipitation. The majority of
streamflow is produced by the thawing of
glaciers or snow. Variations in elevation
within this river basin contribute significantly
to the disparity in precipitation levels. The
river ultimately empties into the Indus River
Basin at Nowshera (Igbal et al., 2018).

3. Materials and Methods
3.1 Historical Data

Monthly data on rainfall, maximum
and minimum temperature were sourced from
the Pakistan Meteorological Department
(PMD) for stations located in Chitral, Drosh,
Dir, and Saidu Sharif, covering the period
from 1981 to 2022 (Table 1). The CMIP6, as
outlined by Eyring et al. (2016), the sixth
phase of the Coupled Model Intercomparison
Project, initiated by the WCRP, includes
approximately 100 distinct global climate
models developed by 49 modelling groups,
and is based on the framework of SSPs (Moss
et al.,, 2010). These SSPs define a range of
socioeconomic baseline scenarios. In CMIP6,
they are integrated with RCPs to form a
comprehensive set of future scenarios (van
Vuuren et al.,, 2014). This study utilizes
temperature and precipitation data from five
GCMs involved in CMIP6. The models are
detailed in Table 2.
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Fig. 1. Geographical location of the study area (Chitral and Swat River Basin (C&SRB)).

Table 1: Geographic and climatic characteristics of met-stations

Station Latitude (N) Longitude Elevation = Mean annual
Name (E) (m) rainfall (mm)
Chitral 71°44°50" 35°49°34" 2130 477.6
Dir 71°51°37" 35°11°33" 1650 1342.1
Drosh 71°46°46" 35°26°40" 2230 756.7
Saidu Sharif  72°21°38" 34°44°58" 1050 1028.4

Table 2: A list of five global climate models chosen for initial analysis to identify the best-
performing models for the study area is provided below.

No. CMIP6 GCM Country Resolution (lon X lat) in degrees
1 ACCESS-ESM1-5  Australia 0.25° x 0.25°
2 GFDL-CM4 USA 0.25° x 0.25°
3 IPSL-CM6A-LR France 0.25°x0.25°
4 MPI-ESM1-2-HR  Germany 0.25°x0.25°
5 NorESM2-MM Norway 0.25° % 0.25°

SSP2-4.5  (SSP245) and  SSP5-8.5
(SSP585)—were  utilized.  Specifically,
precipitation data for the period 2023-2045
were obtained from the NEX-GDDP dataset
using the GCM developed by the CSIRO.
CMIP6, initiated by the WCRP, features

Downscaled climate projections from
the CMIP6 were incorporated into the NASA
NEX-GDDP dataset, from which rainfall and
temperature data were extracted for this
study. Projections from 21 Global Climate
Models (GCMs) under two scenarios—
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around 100 unique GCMs developed by 49
modelling teams, integrating RCPs with
SSPs.

In order to assure the choice of the
most appropriate climate models for each of
the scenarios 2 and 5, five models were
evaluated according to their proficiency in
reproducing current and recently passed
climate conditions. The past-performance
approach, which is utilised for this selection
process, takes into account variables
including temperature and precipitation that
are considered to be the most pertinent to the
objectives of this study's climate change
impact assessment. To enhance the
correspondence between climate model
outputs and observations, bias correction
methods were implemented, including
distributive mapping and scaling model
outputs. This was especially crucial for
applications that are susceptible to biases,
such as hydrological and land surface
modelling. By rectifying biases in the mean
and variance of model-simulated fields, these
techniques guarantee that the projections
more accurately depict extreme values.

Bias correction is performed utilising
historical data and the CmHyd utility. The
mean outcomes of bias correction for all
models, including the optimal model
ACCESS-ESM1-5 that utilises observed
station data, are displayed in Table 3. The
most optimal outcomes are attained via
distributive mapping of precipitation and
temperature.

Table 3: Results of the best model for future
data

Meteorological Before After Bias-
Data Bias- correction
correction
Precipitation ~ R?=10.07 R?2=0.913
RMSE = RMSE =
9.11 mm 6.427 mm
Maximum R2=10.58 R2=10.931
Temperature RMSE = RMSE =
11.2°C 0.271 °C
Minimum R2=10.58 R2=10.929
Temperature RMSE = RMSE =
7.97 °C 0.231 °C

3.2 Standardized Precipitation
Evapotranspiration Index (SPEI)

With over 150 drought indices
documented in the literature, validating each
one and achieving a universal consensus is
impractical. However, there is a growing
consensus on the use of the SPEI in recent
years. This preference is largely due to
SPEI's integration of both rainfall and
temperature data. The SPEI is computed by
initially determining the monthly water
balance, which is the difference between
monthly rainfall and monthly PET.

These values are then aggregated
over the specified timescales of interest.
Calculating  PET  involves several
parameters, such as surface temperature,
humidity, solar radiation intensity on the
earth's surface, and sensible heat fluxes.
However, such detailed meteorological data

are often wunavailable from many
meteorological stations worldwide.
Therefore, various indirect methods,

including the Penman-Monteith, Hargreaves,
and Thornthwaite methods, have been
suggested to estimate it using available
meteorological data. In this study, the
Hargreaves method was employed for PET
calculation due to data unavailability, which
requires maximum and minimum
temperatures and the latitude. The SPEI and
PET were calculated using the RStudio
package "SPEI version 1.8.1". The SPEI
values and their corresponding drought
categories, as defined by the WMO (2012),
are presented in Table 4.

Table 4: Drought and wet categories based
on SPEI values

SPEI values Categories

>02 Extremely wet

1.5 to 1.99 Very Wet

1.0 to 1.49 Moderately Wet
-0.99 t0 0.99 Near Normal

-1.0 to -1.49  Moderately dry
-1.5t0-1.99  Severely drought
<-02 Extremely drought




3.3 Extreme Gradient

(XGBOOST) Model

The XGBoost algorithm, an advanced
version of the GBM, is an influential and
efficient ML technique based on regression
trees. It uses a boosting structure, where
several weak learners are successively
trained to minimize the errors of their
predecessors, resulting in a strong predictive

Boosting

model. XGBoost addresses common
machine learning challenges such as
overfitting and  underfitting  through

regularization and advanced optimization
strategies, making it suitable for complex
problems and large datasets. In this study, we
applied XGBoost with 4000 trees, a
maximum depth of 20, and a learning rate of
0.1, while keeping the remaining
hyperparameters at their default settings. To
further optimize model performance, we
employed Optuna for hyperparameter tuning,
running trials at 100, 500, 1000, and 2000
iterations. The tuning process explored
various combinations of tree numbers (100 to
4000), maximum depths (1 to 22), and
learning rates (0.05, 0.1, and 0.5). This
comprehensive approach allowed us to fine-
tune the XGBoost model effectively,
ensuring it was well-adapted to the specific
characteristics of the dataset and the
complexity of the drought prediction task.

3.4 Tree Algorithms (DT) Model

The tree-based model, widely used in
machine learning, functions by partitioning
the input space into smaller regions and
conveying prediction values to each,
allowing it to effectively capture complex
patterns in the data. In gradient boosting
frameworks like XGBoost, trees are built
sequentially, with each new tree trained to
minimize the residuals from the earlier
iteration. This iterative refinement enhances
the model’s predictive accuracy. Tree-based
models are highly flexible, capable of
handling various data types, capturing non-
linear relationships, and demonstrating
robustness against outliers. In our study, a
Decision Tree model was trained using 4000
trees with a maximum depth of 25. To further
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optimize model performance, we applied
Optuna  for  hyperparameter  tuning,
conducting 100, 200, 500, 1000, and 2000
trials. The tuning process explored different
configurations of tree counts (ranging from
100 to 4000) and maximum depths (from 1 to
25). This comprehensive tuning strategy
allowed us to tailor the Decision Tree model
to the unique characteristics of the dataset
and the complexity of the drought prediction
task.

3.5 Adaptive Boosting (AdaBoost) Model

AdaBoost is a machine learning
algorithm that conglomerates several weak
learners to form a robust predictive model. It
works by training weak learners—typically
decision trees—sequentially, where each
new learner focuses more on the instances
that were misclassified by the previous ones.
This adaptive weighting mechanism enables
the model to iteratively improve its accuracy
by learning from prior errors. AdaBoost is
especially effective for binary classification
and regression tasks, demonstrating strong
performance even on complex datasets. It is
also relatively resistant to overfitting, making
it a reliable choice in practical applications.
In our implementation, we used a decision
tree as the base estimator, with six estimators
in total. For classification, we employed the
"SAMME.R" algorithm, and for regression
tasks, we used squared loss. All other
hyperparameters were kept at their default
settings. This tailored configuration allowed
us to harness the strengths of AdaBoost while
adapting it to the specific requirements of our
dataset, ultimately enhancing the model's
predictive capability.

3.6 Linear Regression Model

Linear regression is a vital technique
widely used for predictive analysis. It models
the connection between a dependent variable
and one or more independent variables by an
appropriate linear equation that reduces the
sum of squared differences between the
actual and predicted values. The model
attains this by assessing coefficients that best
describe the linear association, making it a
simple yet powerful tool for tasks such as



trend analysis, impact assessment of
variables, and forecasting. Its interpretability
and ease of implementation make it a
foundational model for more advanced
techniques. In our study, we also
implemented Elastic Net Regression with an
o value of 0.0001, an LI1:L2 ratio of
0.99:0.01, and the intercept fitting enabled.
Elastic Net combines the strengths of both L1
(Lasso) and L2 (Ridge) regularization
methods, offering a balanced approach that
promotes sparsity while maintaining model
stability. This regularization helped improve
the model’s generalization performance by
reducing the risk of overfitting, thereby
enhancing its applicability to the drought
prediction task.

3.7 Model Evaluation

To evaluate predictive models,
several criteria are employed, including R-
squared (R?), RMSE, MAE, and MSE. R-
squared signifies the proportion of variance
in the dependent variable that is explained by
the independent variables, with a value of 1
representing a perfect fit. RMSE and MAE
measure the average deviance between
predicted and actual values, with lower
values portentous better performance. While
RMSE gives more weight to larger errors,
MAE treats all errors with equal prominence.
MSE, similar to RMSE but without taking
the square root, reproduces the average of the
squared errors. These metrics are decisive for

evaluating a model's accuracy, precision, and
ability to generalize to new data.

4. Results

The SPEI was calculated in RStudio
using the SPEI package for the historical
period from 1981 to 2022. Additionally, PET
was calculated using the Hargreaves formula.
These computations were extended to the
future period from 2023 to 2045 for SSP245
and SSP585. SPEI-3 and SPEI-6 calculations
and predictions have been implemented for
all meteorological stations. The following
provides detailed information for a
representative station of the study area.

4.1 DIR

The analysis of drought episodes
discloses distinct patterns over the years.
Notably, in 1989, 2007, 2009, and 2022, the
region faced extreme drought conditions,
marked by significantly below-average
precipitation levels or higher-than-normal
temperatures, resulting in prolonged water
scarcity and agricultural stress.

Conversely, the period between 1986
and 1987 experienced relatively few drought
episodes, suggesting a temporary relief from
severe drought conditions, likely due to
higher-than-average rainfall. However, this
respite was brief, as the region encountered
repeated drought episodes in subsequent
years, as shown in Figure 2.
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The recurring nature of drought
episodes highlights the vulnerability of the
region to climatic fluctuations. Grasping
these patterns is essential for developing
effective drought mitigation strategies and
enhancing the resilience of communities and
ecosystems against future drought events.

In the realm of climate impact
assessments, the efficacy of predictive
models plays a pivotal role in elucidating
future climatic scenarios. For the SSP245
scenario, the Gradient Boosting model
demonstrated moderate accuracy, yielding an
RMSE of 0.225 and an R2 of 0.926. While
these metrics indicate a reasonable alignment
between predicted and observed SPEI values,
there exists scope for further refinement. On
the other hand, the AdaBoost and Tree
models exhibited acceptable performance,
with RMSE values of 0.218 and 0.343,
respectively. Despite providing relatively
accurate predictions, they fell short of the
precision achieved by the Gradient Boosting
model. Conversely, the Linear Regression
model  displayed poor performance,
recording an RMSE of 0.826 and an R? close
to zero, underscoring its inadequacy in
accurately forecasting SPEI values under this
scenario. The future time series prediction is
shown in Figure 3.

On the contrary, the SSP585 scenario
observed that the Gradient Boosting model
achieved exceptional accuracy, as evidenced
by its RMSE of 0.105 and R? of 0.983. The
metrics indicate a strong correlation between
the model's predictions and the observed
SPEI values, which provides further
evidence of its reliable predictive
capabilities. In a similar vein, the AdaBoost
and Tree models performed admirably, as
evidenced by their respective RMSE values
of 0.150 and 0.123, which validated their
ability to provide precise predictions for the
SSP585 scenario. However, the Linear
Regression model encountered difficulties in
accurately predicting SPEI values for this
scenario, as evidenced by its RMSE of 0.791
and R? of 0.070. In summary, the results of
this study emphasise the importance of
incorporating  sophisticated  modelling
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methods, like Gradient Boosting, into climate
impact assessments due to their superior
predictive  capabilities  compared to
conventional Linear Regression models. All
ML models and their time series prediction is
shown in Figure4.

4.2 Spatial Analysis

The Inverse Distance Weighting
(IDW) technique was employed to visualize
drought conditions across the study region.
IDW is an interpolation method that
approximates unknown values at locations
established on the values of close known
points, assuming that nearer points have
more influence than those farther away.
Specifically, IDW was applied to identify
and illustrate the months during which all
stations experienced drought conditions,
indicated by SPEI values less than 0. These
figures exclusively present the SPEI-3 and
SPEI-6 values, which reflect short- and
medium-term droughts, respectively. The
contours displayed on the maps represent
interpolated SPEI values with a fixed interval
of 0.1, indicating the intensity and spatial
spread of drought across the region. The
spatial maps offer a clearer representation of
meteorological drought intensity under
different future climate scenarios. Figure
5(a,b) shows drought months for SSP245,
while Figure 6(a,b) shows drought months
for SSP58S.

4.3 Future drought analysis

Understanding future droughts is
crucial for planning effective strategies to
minimize their impact on agriculture, the
environment, and ecosystems. Knowledge of
their intensity and duration allows for
informed decision-making to mitigate these
adverse effects. Tables 5 and 6 show the three
maximum drought durations of all stations
for SSP245 and SSP585, respectively.

The drought scenarios under SSP585
are projected to be more prolonged and
intense compared to those under SSP245,
largely due to rising temperatures.
Specifically, at Chitral station, the maximum
drought duration is anticipated to be 9



months under SSP245, whereas it extends to
11 months under SSP585. Similarly, the Dir
station exhibits a maximum drought duration
of 9 months for SSP585, compared to 8
months for SSP245. Interestingly, Drosh and
Saidu Sharif stations show a higher drought
duration under SSP245 compared to SSP585.
Saidu Sharif station is particularly notable,
facing the worst drought conditions with a
staggering 40 months of drought under
SSP585, the longest duration observed across
all stations for the entire future period.

These findings highlight significant
regional variations in drought intensity and

duration under different climate scenarios.
The higher temperatures projected in SSP585
contribute to more severe drought conditions,
exacerbating water scarcity issues. The
extended drought periods at Chitral and Dir
stations under SSP585 indicate heightened
vulnerability, necessitating targeted water
management strategies. Conversely, the
unexpectedly higher drought duration at
Drosh and Saidu Sharif stations under
SSP245 suggests that factors other than
temperature, such as precipitation patterns
and local climatic conditions, also play
crucial roles in drought dynamics.
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5. Discussion

The primary objective of this research
was to apply machine learning models—
namely AdaBoost, Decision Tree, XGBoost,
and Linear Regression—to forecast the
SPEI-3 and SPEI-6 for the Chitral and Swat
River Basins. While the results indicated that
all models delivered reasonable accuracy, a
more critical evaluation revealed substantial
disparities in  model  performance,
particularly in capturing complex drought
dynamics in these high-altitude, data-scarce
regions.
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The study’s comparative analysis, using
evaluation parameters such as R?, RMSE,
MAE, and MSE, suggested that although all
models performed adequately, the Decision
Tree and Linear Regression models
underperformed relative to ensemble-based
methods. This reinforced the well-
documented limitations of standalone tree
models in handling non-linear, multi-
dimensional relationships typical in climate
datasets. AdaBoost demonstrated moderate
performance improvements by adaptively
focusing on misclassified instances, yet it fell
short of the robustness and generalization
ability exhibited by XGBoost.
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Table 5: Drought duration for SSP245

SPEI  Station Start End Duration Intensity
SPEI-3 Chitral May-2037 Feb-2038 9 -1.67
Jan-2030 Sep-2030 8 -1.56
Feb-2023 Sep-2023 7 -0.93
Dir Jul-2027 Jan-2028 6 -1.25
Dec-2029 Mar-2030 3 -0.94
Aug-2030  Nov-2030 3 -1.50
Drosh  Feb-2023 Jun-2023 4 -0.60
Nov-2037 Feb-2038 3 -1.30
Oct-2027 Dec-2027 2 -0.58
Saidu Jul-2027 Jan-2028 6 -1.05
Sharif  Dec-2029 Jun-2030 6 -1.54
Dec-2038 Jun-2039 6 -0.95
SPEI-6 Chitral  Jan-2024 Mar-2025 14 -1.19
Oct-2043 Aug-2044 10 -1.01
Feb-2023 Nov-2023 9 -0.83
Dir Nov-2037 Apr-2038 5 -1.00
Oct-2043 Mar-2044 5 -0.68
Dec-2029 Apr-2030 4 -0.62
Drosh  Apr-2023 Jul-2023 3 -0.59
Dec-2037 Feb-2038 2 -0.69
Jan-2044 Mar-2044 2 -0.36
Saidu Feb-2039 Dec-2039 10 -0.88
Sharif  Jan-2030 Aug-2030 7 -1.44
Nov-2037 Apr-2038 5 -1.39

Table 6: Drought duration for SSP585

SPEI  Station Start End Duration Intensity

SPEI-3 Chitral  Feb-2036 Jan-2037 11 -1.13
Sep-2030 Jun-2031 9 -0.95

Jul-2039 Apr-2040 9 -1.15

Dir Aug-2039 Apr-2040 8 -1.34
Aug-2025 Mar-2026 7 -1.21
Aug-2034 Jan-2035 5 -0.88

Drosh Oct-2039 Apr-2040 6 -0.72
Nov-2025 Mar-2026 4 -1.05

Aug-2036 Dec-2036 4 -0.63

Saidu Apr-2027 Feb-2028 10 -1.41
Sharif Oct-2031 May-2032 7 -1.59
Jun-2023 Dec-2023 6 -1.03

SPEI-6 Chitral  Aug-2039 Aug-2040 12 -1.13
Nov-2025 Oct-2026 11 -1.52

Feb-2036 Jan-2037 11 -1.11

Dir Feb-2034 Feb-2035 12 -0.92
Feb-2036 Jan-2037 11 -1.60

Feb-2029 Oct-2029 8 -0.85

Drosh Mar-2036 Dec-2036 9 -0.41
Apr-2032 Sep-2032 5 -0.36

Dec-2039 Apr-2040 4 -0.61

Saidu May-2025 Sep-2028 40 -1.79
Sharif  Apr-2040 Apr-2041 12 -1.53
Sep-2023 Aug-2024 11 -1.09
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XGBoost emerged as the most
reliable model, consistently outperforming
others across both short-term (SPEI-3) and
mid-term (SPEI-6) drought predictions. Its
superior accuracy underscores the advantage
of using gradient boosting frameworks that
incorporate regularization and advanced
optimization techniques to handle noise,
overfitting, and data heterogeneity. These
findings align with previous work by Khan et
al. (2024), who demonstrated that XGBoost
achieved the highest predictive accuracy for
drought forecasting in the Kabul River Basin.
Moreover, XGBoost was successfully
employed for inflow prediction into the
Tarbela Reservoir by Jan et al. (2024). It
delivered exceptional forecasting
performance, further validating its efficacy
for hydrological modelling in complex
terrains.

As an additional point of interest, the
findings of the study suggest that, according
to the SPEIL the years 2027, 2030, 2035,
2037, 2038, and 2044 will be characterised
by mild drought conditions. This highlights
the significance of this type of research in
terms of understanding and forecasting
climatic events for the purpose of improving
planning and methodologies for mitigating
their effects.

The historical drought patterns
identified in this study show strong
alignment  with  previous  research,

reinforcing the reliability of our findings. For
example, Rahman et al. (2021) recounted
drought events in 1972, 1988, 2000, 2001,
2002, 2006, and 2017 using the SPEI-12
index in the KPK region, periods that closely
correspond to those detected in our analysis.
Also, Sidiqi et al. (2023) identified drought
in 2019 and 2020 using the SPI and RDI
indices, which are consistent with our results
across all stations during the same years.
Alami et al. (2017) perceived extreme
drought in 2001, severe drought in 2000, and
moderate drought in 2003-2004, closely
identical to our results of extreme drought in
2001 and severe to moderate situations from
August to December 2003. Baig et al. (2020)
also reported agricultural drought in 2000,
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2001, 2002, and 2004 using the SDCI index,
years that correspond with our identification
of extreme drought in 2001 and moderate
droughts in 2000, 2002, and 2004.
Furthermore, Taraky et al. (2021) noted
moderate hydrological drought in 2001 and
2002 using the SSI index, while our findings
suggest more severe drought conditions
during those years, which are supported by
other researchers as well. These consistent
observations across multiple  studies
underscore the robustness and credibility of
our analysis in capturing historical drought
events in the region.

The SPI and RDI (Sidiqi et al., 2023)
show drought in the years 2026, 20372038,
and 2043. Likewise, our results show drought
during these periods, with moderately dry
years in 2024, 2025, 2027-2030, 2035, and
2038-2040. Severe drought events are
expected in years including 2030 and 2038.

6. Conclusion

This study assessed the applicability
of ML models in forecasting meteorological
droughts in the Chitral and Swat River Basins
using the SPEI. By integrating long-term
climatic data from 1981 to 2022 and
employing advanced algorithms—including
XGBoost, AdaBoost, Decision Tree, and
Linear Regression—the research
demonstrated that ensemble-based models,
particularly XGBoost, provided superior
predictive  performance. The  results
highlighted XGBoost’s strong ability to
model non-linear climate relationships, with
an R? of 0968 and RMSE of 0.265,
outperforming other methods significantly.
Spatial distribution maps further indicated
persistent moderate drought patterns across
both basins, emphasizing the importance of
localized drought monitoring. The findings
underscore the utility of machine learning in

drought forecasting and support the
integration of such models into early warning
systems and regional water resource
planning. Future studies incorporating
broader datasets and additional geographic
regions could further improve the



generalizability and accuracy of these
predictive tools.
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