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Abstract 

This study models the current and future distribution of Cedrus Deodara, a native 

conifer of Khyber Pakhtunkhwa (KP), Pakistan, at a spatial resolution of 1 km. Presence-only 

occurrence data were obtained from the Global Biodiversity Information Facility (GBIF) and 

combined with bioclimatic and topographic variables. To reduce redundancy, a 

multicollinearity test was performed on 22 candidate predictors, and highly correlated variables 

(r ≥ 0.9) were excluded. The Maximum Entropy (MaxEnt) model was applied to predict species 

distribution under present conditions and two future climate scenarios (SSP2-4.5 and SSP5-

8.5) for 2090. Model performance was evaluated using the AUC, TSS, and overall accuracy. 

The obtained results show a good performance of the model for present and future models as 

well, gaining the ROC-AUC value of 0.72 and 0.77, respectively. Based on the 10th percentile 

training presence-threshold dependent, the overall accuracy of the model and TSS are 0.75 and 

0.74, respectively. Jackknife analysis revealed precipitation variables as the most influential 

contributors to Cedrus Deodara distribution. Results suggest that the species will experience 

substantial habitat contraction under SSP2-4.5, whereas distributional shifts under SSP5-8.5 

are comparatively minor. These findings emphasize the vulnerability of Cedrus Deodara to 

climate change and demonstrate the value of MaxEnt modeling for informing conservation and 

management strategies in biodiversity-rich regions. 

Keywords: Global Biodiversity Information Facility (GBIF); MaxEnt; Species Distribution; 

Habitat Conservation; Biodiversity 

1. Introduction 

An ecosystem is a dynamic 

community of organisms (plants, animals, 

and microorganisms) that interact with one 

another and with their physical environment, 

including air, water, and soil (Tsujimoto et 

al., 2018). These interactions sustain 

essential processes such as energy flow, 

nutrient cycling, and ecological stability 

(Gillani et al., 2025; Guillaumot et al., 2019). 

Beyond trophic relationships, species engage 

in symbiotic interactions (Rahman et al., 

2022): mutualism, where both species benefit 

(e.g., bees pollinating flowers); 

commensalism, where one benefits without 

affecting the other (e.g., birds nesting in 

trees); and parasitism, where one benefits at 

the expense of the host (e.g., ticks feeding on 

mammals) (Liu, 2016). Such intricate 

relationships underscore the importance of 

biodiversity, as alterations in one species can 

cascade through the ecosystem, affecting its 

resilience and functionality (Verma, 2018; 

Waheed et al., 2023). Species distribution is 

shaped by a combination of environmental, 

biological, and anthropogenic factors. 

Abiotic conditions such as temperature, 

precipitation, and climate strongly influence 

habitat suitability, while soil texture, nutrient 

availability, and pH further affect species 

persistence (Ali et al., 2023; Asad et al., 

2024; Rahman et al., 2022, 2024). 

Topographic features, including slope, 

aspect, and elevation, modify local 

microclimates, and water availability is often 

a critical determinant for both terrestrial and 

aquatic species (Ali et al., 2023; Asad et al., 

2024; Ashcroft et al., 2011; Khan et al., 

2021). Human activities such as urbanization, 

deforestation, and agriculture fragment 

habitats, while climate change and pollution 

alter ecosystems on broader scales, driving 

species migration or shifts in habitat 

suitability (Malik et al., 2020; Ahmad et al., 

2024; Asad et al., 2024; Khan et al., 2021; 

Reese et al., 2005; Tayyab et al., 2023). 
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Climate change may also facilitate 

environmental degradation (Shah et al., 

2019) and the spread of invasive species, 

further threatening native biodiversity. In 

addition, evolutionary adaptations, historical 

processes, and natural barriers such as 

mountains or rivers can constrain species' 

ranges. Collectively, these factors create a 

complex network of interactions that define 

ecosystems and shape relationships among 

different trophic levels (Ali et al., 2023, 

2024; Arshad et al., 2022; Thibaud et al., 

2014).  

Khyber Pakhtunkhwa (KP), the 

northwestern province of Pakistan, is 

characterized by diverse topography that 

ranges from dense forests and high 

mountains to arid valleys and fertile plains. 

This environmental heterogeneity, coupled 

with climatic variation, makes KP a 

biodiversity hotspot. Coniferous forests 

dominate much of the region, particularly in 

higher elevations of Swat, Chitral, and Dir, 

where species such as Cedrus Deodara, 

spruce, and pine are abundant. These forests 

play a vital role in carbon storage, 

hydrological regulation, and habitat 

provision, while also supporting the 

livelihoods of local communities in 

mountainous areas. However, rapid 

urbanization, deforestation, and climate 

change threaten these ecosystems, 

highlighting the urgent need for effective 

conservation and ecological management. 

Predictive modeling approaches can provide 

valuable insights into how climate change 

may alter species distributions and habitat 

suitability (Ali et al., 2020; Durrani et al., 

2024; Khan et al., 2019, 2021).  

Species distribution models (SDMs) 

are widely used to address conservation, 

ecological, and biogeographical questions 

(Ali et al., 2014; Kunwar et al., 2023). 

Different SDM techniques are available 

(Guisan and Thuiller, 2005), some of which 

use “presence only data” and others use 

“presence-absence data” (Ali et al., 2023; Ali 

et al., 2014; Kharel et al., 2024; Lobo et al., 

2010). SDMs are particularly valuable for 

identifying threatened species, assessing the 

impacts of climate change, and evaluating 

habitat suitability (Malla et al., 2023; 

Ranjitkar et al., 2014). Machine learning 

algorithms, including MaxEnt, Random 

Forest (RF), Support Vector Machine 

(SVM), and Artificial Neural Network 

(ANN), improve the classification techniques 

(Hassan et al., 2025). Among various 

machine learning techniques, Maximum 

Entropy (MaxEnt) modeling has emerged as 

one of the most widely applied techniques. 

MaxEnt combines species occurrence 

records with environmental variables to 

predict current and future distributions, 

making it especially useful in conservation 

planning under climate change scenarios 

(Khan et al., 2021).  

MaxEnt is particularly effective when 

species occurrence data are available, as it 

performs well with presence-only records 

(Khan et al., 2021). The model integrates 

species presence data with environmental and 

topographic predictors to estimate habitat 

suitability. Owing to its flexibility and strong 

predictive performance, MaxEnt has become 

widely used in ecology, climate change 

research, and conservation planning, 

especially for predicting range shifts and 

identifying suitable habitats under future 

climate scenarios (Javidan et al., 2021).  

In this study, we focus on Cedrus 

Deodara (Deodar cedar), an evergreen 

conifer native to the western Himalayas. 

Renowned for its height, majestic form, and 

ecological importance, Cedrus Deodara also 

holds cultural and spiritual significance. The 

name “Deodara” is derived from Sanskrit, 

meaning “wood of the gods,” reflecting its 

historical importance in the Indian 

subcontinent (Chaudhary et al., 2011; Gillani 

et al., 2025). Cedrus Deodara typically 

occurs at elevations between 1,500 and 3,200 

meters, where it thrives under cool climatic 

conditions (Sharma et al., 2018). 

Ecologically, it plays a vital role in 

stabilizing soils, preventing erosion, 

regulating microclimates, and providing 

habitat for associated species. It often 

coexists with oak, rhododendron, and pine in 

montane forests of the western Himalayas 

(Pandey et al., 2023). As per the literature 

review, most of the studies on species 

distribution modeling have been conducted 

on the district level, except for  Durrani et al. 

(2024), who conducted the study on the 

provincial level. Keeping this background in 
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mind, the overall objective of this study is to 

integrate bioclimatic and topographic 

variables with species occurrence data to 

model the current and future distribution of 

Cedrus Deodara at the provincial level in 

Khyber Pakhtunkhwa using MaxEnt. Two 

Shared Socioeconomic Pathways (SSP2-4.5 

and SSP5-8.5) were employed to project 

distribution shifts by 2090. 

2. Study Area 

The study was conducted in Khyber 

Pakhtunkhwa (KP), the northwestern 

province of Pakistan, formerly known as the 

North-West Frontier Province (NWFP) (Fig. 

1). KP covers an area of approximately 

74,521 km² and shares borders with Punjab to 

the southeast, Afghanistan to the north and 

west, and Baluchistan to the southwest. The 

province is characterized by diverse 

topography, ranging from high mountain 

ranges to fertile plains, and exhibits 

substantial climatic variability. This 

environmental heterogeneity has created 

multiple ecological zones, making KP a 

recognized biodiversity hotspot in Pakistan 

(Majid et al., 2023).  

 

Fig. 1. Map of the study area in Khyber Pakhtunkhwa (KP), Pakistan, showing provincial 

boundaries and its geographical location within the country. 

3. Methodology 

The methodological framework adopted in 

this study is illustrated in Figure 2. It 

summarizes the sequential stages followed, 

including data acquisition, preprocessing, 

modeling, evaluation, and map generation of 

the Cedrus Deodara distribution.  

3.1. Input Data 

3.1.1. Bioclimatic Variables 

Nineteen bioclimatic variables 

(Bio1–Bio19) were obtained from the 

WorldClim database (www.worldclim.org) 

at a spatial resolution of ~1 km (30 arc-

seconds). These variables capture long-term 

climatic patterns, particularly temperature 

and precipitation, which are known to be 

strongly related to the species distributions 

(Ray et al., 2011). The full list of variables 

and their descriptions is provided in Table 1. 

3.1.2. Topographic Variables 

http://www.worldclim.org/
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Three topographic predictors, 

including slope, aspect, and Terrain 

Roughness Index (TRI), were derived from 

the ASTER Global Digital Elevation Model 

(GDEM v3), downloaded from NASA’s 

Earth Data portal. These variables account 

for microclimatic variation caused by terrain 

features. 

3.1.3. Species Occurrence Data 

Presence-only occurrence records of 

Cedrus Deodara were retrieved from the 

Global Biodiversity Information Facility 

(GBIF; https://www.gbif.org/). Duplicate and 

erroneous records were removed to minimize 

spatial bias and ensure model reliability. To 

address the biases that could affect the model 

performance, spatial filtering of ~1km x 1 km 

(Malla et al., 2023) was applied using the 

“spThin” package (Khanal et al., 2022; 

Kharel et al., 2024) in R (R Core Team, 2025, 

version: 4.4.2) to reduce the spatial 

autocorrelation. 

3.2. Data Processing 

All environmental variables were 

standardized to a spatial resolution of 1 km 

and clipped to the administrative boundary of 

Khyber Pakhtunkhwa (KP). Raster snapping 

was performed to ensure alignment across 

datasets. 

To address multicollinearity among 

the predictors, a Pearson correlation analysis 

was performed using the programming 

language R. Variables with correlation 

coefficients r ≥ 0.9 were excluded from 

subsequent modeling. The selected variables 

were converted into ASCII format for 

compatibility with the MaxEnt software. 

3.3. Species Distribution Modeling 

Species distribution modeling was 

performed using the Maximum Entropy 

algorithm (MaxEnt; Phillips et al., 2006), 

which is particularly suited for presence-only 

data. Both current and future distributions 

were modeled. Future projections were 

generated using the BCC-CSM2-HR Global 

Circulation Model under two Shared 

Socioeconomic Pathways (SSP2-4.5 and 

SSP5-8.5) for the period 2081–2100 

(hereafter 2090). Previously, these data have 

been used in Pakistan (Gilani et al., 2020), the 

South Asian region (Khan et al., 2022), and 

in the Hindu Kush-Himalaya (HKH) region 

(Malik et al., 2022) with good accuracy for 

the species distribution with respect to 

climate change.  

3.4. Model Evaluation 

Model performance was evaluated 

using multiple statistical measures. The Area 

Under the Curve (AUC) of the Receiver 

Operating Characteristics (ROC) was 

employed to assess the model’s ability to 

discriminate between suitable and unsuitable 

habitats. In addition, the True Skill Statistic 

(TSS) was calculated to provide a balanced 

measure of sensitivity and specificity. 

Furthermore, the Jackknife test was 

conducted to determine the relative 

importance and contribution of each 

environmental variable to the model’s 

predictive performance. 

3.5. Mapping and Visualization 

Final habitat suitability maps were 

generated in the ArcGIS software suite. 

Suitability was expressed as a continuous 

probability surface, categorized into classes 

ranging from very low to very high. Maps 

were produced for the current distribution as 

well as for future climate change scenarios 

(SSP2-4.5 and SSP5-8.5) to visualize 

potential shifts in the distribution of Cedrus 

deodara. 

4. Results and Discussion 

4.1. Variable Selection 

The multicollinearity test reduced the initial 

set of 22 variables (19 bioclimatic and 3 

topographic) to 11 predictors, including eight 

bioclimatic and three topographic variables. 

Variables with Pearson correlation 

coefficients (r ≥ 0.9), such as Bio2, Bio3, 

Bio5, Bio6, Bio10, Bio11, Bio12, Bio13, 

Bio16, Bio18, and Bio19, were excluded 

from further analysis (Supplementary Table 

S1). This selection ensured that highly 

correlated predictors did not bias model 

performance, a practice consistent with 

earlier studies (Gilani et al., 2020). 

https://www.gbif.org/
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Fig. 2. Overview of the methodological framework applied for predicting the current and future 

distribution of Cedrus Deodara in Khyber Pakhtunkhwa, Pakistan. 

 

Table 1: Nineteen bioclimatic variables (Bio1–Bio19) from WorldClim (~1 km resolution), 

used as predictors in MaxEnt modeling. 

No Bioclimatic Variable Description 

1 Bio-1 Annual mean temperature 

2 Bio-2 Mean diurnal range (mean of monthly (max temp-min temp) 

3 Bio-3 Isothermality  

4 Bio-4 Temperature seasonality  

5 Bio-5 Max temperature of the warmest month 

6 Bio-6 Minimum temperature of the coldest month 

7 Bio-7 Temperature annual range (bio-5 – bio-6) 

8 Bio-8 Mean temperature of the wettest quarter 

9 Bio-9 Mean temperature of driest quarter 

10 Bio-10 Mean temperature of the warmest quarter 

11 Bio-11 Mean temperature of the wettest quarter 

12 Bio-12 Mean temperature of the coldest quarter 

13 Bio-13 Annual precipitation 

14 Bio-14 Precipitation of the wettest month 

15 Bio-15 Precipitation of the driest month 

16 Bio-16 Precipitation seasonality (coefficient of variation) 

17 Bio-17 Precipitation of the driest month 

18 Bio-18 Precipitation of the warmest month 

19 Bio-19 Precipitation of the coldest month 
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4.2. Model Performance  

The MaxEnt model demonstrated 

reliable predictive power, with training AUC 

values above 0.80 across all scenarios (Table 

2). The test AUC values were slightly lower, 

ranging from 0.69 for the current period to 

0.78 under SSP2-4.5 and 0.73 under SSP5-

8.5. These results indicate good model 

performance, although the lower test AUC 

for the current period suggests moderate 

predictive strength, possibly due to limited 

presence data or environmental variability 

not captured in the predictors. Nonetheless, 

the consistency between training and test 

values indicates the model was not overfit. 

Table 2: Training and test AUC values of the 

MaxEnt model for current and future climate 

scenarios (SSP2-4.5 and SSP5-8.5) 

predicting the distribution of Cedrus 

Deodara. 

Scenario Training 

AUC 

Test AUC 

Current 0.80 0.69 

SSP2-4.5 0.86 0.78 

SSP5-8.5 0.84 0.73` 

4.3. Variable Contribution 

The Jackknife test revealed that 

precipitation-related variables were the 

dominant predictors of Cedrus Deodara 

distribution (Fig. 3). Specifically, 

precipitation of the wettest month (Bio14) 

and precipitation of the driest month (Bio17) 

contributed most strongly to the model. 

These findings highlight the ecological 

importance of water availability for Cedrus 

Deodara, which thrives in montane 

environments where precipitation plays a 

crucial role in maintaining soil moisture and 

regulating microclimate. Similar patterns 

have been reported in other coniferous 

species of the Western Himalayas (Pandey et 

al., 2023). 

4.4. Model Accuracy and Validation 

Evaluation metrics further confirmed 

the robustness of the model. The TSS values 

exceeded 0.70 across all scenarios, while 

Cohen’s Kappa ranged between 0.61 and 

0.65, and overall accuracy surpassed 70% 

(Table 3). Sensitivity and specificity values 

were balanced, demonstrating that the model 

was equally effective in identifying suitable 

and unsuitable habitats. These results align 

with the thresholds suggested by Allouche et 

al. (2006), which consider TSS values above 

0.6 as indicative of useful predictive 

accuracy. 

4.5. Spatial Distribution Patterns 

The suitability maps indicate a clear 

elevational and latitudinal gradient for 

Cedrus Deodara, as shown in Figure 4. By 

following the criteria used by Gilani et al. 

(2020), Paudel et al. (2025), and Yang et al. 

(2013), we renamed the classes of habitat 

suitability distribution as: 1) Very Low (0-

0.2), 2) Low (0.2-0.4), 3) Moderate (0.4-0.6), 

4) High (0.6-0.7), and 5) Very High (0.7-1.0). 

Under current climate, high to very high 

suitability forms a continuous belt across the 

northern mountain districts of KP, most 

prominently the Hindu Kush, western 

Himalayan zone (e.g., Chitral, Upper/Lower 

Dir, Swat, Kohistan, and parts of 

Mansehra/Hazara), while the central 

lowlands show medium suitability and the 

southern arid plains (e.g., Karak, Bannu, 

Dera Ismail Khan) remain largely low to very 

low. Under SSP2-4.5 (2090), this high-

suitability belt becomes noticeably 

fragmented: mid-elevation areas transition 

from green to yellow/orange, and marginal 

zones in the central province lose suitability, 

suggesting an upslope and northward 

contraction. In contrast, the SSP2-8.5 (2090) 

projection retains much of the northern core, 

with extensive high/ very-high suitability 

persisting and only localized edge losses; 

some northeastern highlands appear to 

maintain or slightly consolidate suitability 

relative to SSP2-4.5. Overall, the maps point 

to range reorganization along the montane 

belt, with the strongest contraction under 

SSP2-4.5 and comparatively smaller net 

losses under SSP2-8.5, implying an 

upward/northward shift in suitable habitat 

and emphasizing the role of mountain 

microclimates in buffering Cedrus Deodara 

populations. Beyond the system-based 

evaluation (AUC, TSS, and Kappa), the 

ecological significance of our climate change 

scenarios is strongly supported by the 

literature published on the same study area. 

Under SSP 5-8.5, the predicted northward 

shift of Cedrus Deodara is supported by the 

findings of Durrani et al. (2024) in the same 
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geographical extent on eight tree species of 

KP, including Cedrus Deodara.  Both 

validations (system-based and external) 

provide the robustness of the predictive 

model. It confirms the latitudinal shift of 

species within the Hindu Kush Himalayan 

(HKH) region under different climate change 

scenarios. 

 
Fig. 3. Jackknife test results showing the relative importance of environmental variables in 

predicting the distribution of Cedrus Deodara for (a) current and future climate scenarios, (b) 

SSP2-4.5, and (c) SSP2-8.5 for 2090. 

Table 3: MaxEnt model evaluation metrics for Cedrus Deodara. 

Scenario ROC-

AUC 

TSS Max 

Kappa 

Overall 

Accuracy 

Sensitivity Specificity 

Current 0.72 0.71 0.61 0.72 0.64 0.72 

SSP2-4.5 0.80 0.79 0.65 0.80 0.69 0.80 

SSP5-8.5 0.74 0.74 0.63 0.74 0.72 0.74 

4.6. Spatial Distribution Patterns 

The suitability maps indicate a clear 

elevational and latitudinal gradient for 

Cedrus Deodara as shown in Figure 4. By 

following the criteria used by Gilani et al. 

(2020), Paudel et al. (2025), and Yang et al. 

(2013), we renamed the classes of habitat 

suitability distribution as: 1) Very Low (0-

0.2), 2) Low (0.2-0.4), 3) Moderate (0.4-0.6), 

4) High (0.6-0.7), and 5) Very High (0.7-1.0). 

Under current climate, high to very high 

suitability forms a continuous belt across the 

northern mountain districts of KP, most 

prominently the Hindu Kush, western 

Himalayan zone (e.g., Chitral, Upper/Lower 

Dir, Swat, Kohistan, and parts of 

Mansehra/Hazara), while the central 

lowlands show medium suitability and the 

southern arid plains (e.g., Karak, Bannu, 

Dera Ismail Khan) remain largely low to very 

low. Under SSP2-4.5 (2090), this high-

suitability belt becomes noticeably 

fragmented: mid-elevation areas transition 

from green to yellow/orange, and marginal 

zones in the central province lose suitability, 

suggesting an upslope and northward 

contraction. In contrast, the SSP2-8.5 (2090) 

projection retains much of the northern core, 

with extensive high/ very-high suitability 
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persisting and only localized edge losses; 

some northeastern highlands appear to 

maintain or slightly consolidate suitability 

relative to SSP2-4.5. Overall, the maps point 

to range reorganization along the montane 

belt, with the strongest contraction under 

SSP2-4.5 and comparatively smaller net 

losses under SSP2-8.5, implying an 

upward/northward shift in suitable habitat 

and emphasizing the role of mountain 

microclimates in buffering Cedrus Deodara 

populations. Beyond the system-based 

evaluation (AUC, TSS, and Kappa), the 

ecological significance of our climate change 

scenarios is strongly supported by the 

literature published on the same study area. 

Under SSP 5-8.5, the predicted northward 

shift of Cedrus Deodara is supported by the 

findings of Durrani et al. (2024) in the same 

geographical extent on eight tree species of 

KP, including Cedrus Deodara.  Both 

validations (system-based and external) 

provide the robustness of the predictive 

model. It confirms the latitudinal shift of 

species within the Hindu Kush Himalayan 

(HKH) region under different climate change 

scenarios. 

 

Fig. 4. Predicted habitat suitability of Cedrus Deodara in Khyber Pakhtunkhwa, Pakistan, 

under (a) current climate and future scenarios, (b) SSP2-4.5, and (c) SSP2-8.5 for 2090. 

 

4.7. Implications for Conservation 

The results underscore the 

vulnerability of C. deodara to climate change 

and highlight the need for proactive 

conservation measures. Regions projected to 

remain suitable under both scenarios may 

serve as climate refugia and should be 

prioritized for conservation. Predictive 

modeling approaches, such as MaxEnt, 

provide valuable insights for identifying 

critical habitats, guiding forest management, 

and developing strategies to mitigate 

biodiversity loss in the Western Himalayas. 

5. Conclusion 

This study applied MaxEnt species 

distribution modeling to assess the current 

and future habitat suitability of Cedrus 

Deodara in Khyber Pakhtunkhwa, Pakistan. 

By integrating bioclimatic and topographic 

variables with species occurrence records, we 

generated spatial predictions under present 

conditions and two future climate scenarios 

(SSP2-4.5 and SSP5-8.5) for 2090. The 

results demonstrate that precipitation-related 

variables, particularly during the wettest and 

driest months, are the most influential drivers 

of Cedrus Deodara distribution. Model 

evaluation metrics (AUC, TSS, Kappa) 

confirmed strong predictive performance, 

providing confidence in the projections. 

The spatial analysis revealed that 

Cedrus Deodara currently occupies high-

altitude northern regions of KP, while future 

climate change is expected to shift its range 

upward and northward. Notably, SSP2-4.5 

indicates a more pronounced contraction of 

suitable habitat compared to SSP5-8.5, 

highlighting the species’ sensitivity to 

moderate warming scenarios. These findings 

underscore the vulnerability of Cedrus 

Deodara to climate change and the potential 

loss of critical habitats if adaptive 

management strategies are not implemented. 

Overall, this study emphasizes the 

value of predictive modeling in guiding 

conservation planning and forest 

management. Identifying potential refugia 

and high-suitability zones can support 
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targeted conservation interventions, assist 

policymakers in prioritizing biodiversity 

hotspots, and contribute to sustainable forest 

management in the Hindukush Himalaya 

region. Future research should expand upon 

this approach by incorporating presence-

absence data, comparing alternative 

modeling algorithms, and integrating 

additional environmental predictors such as 

soil and remote-sensing variables to further 

refine species distribution forecasts. 
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Supplementary Material 

Table S1. Pearson correlation matrix among bioclimatic variables (Bio1–Bio19) and topographic factors (Aspect, Slope, and TRI). High correlation coefficients 

(> 0.9) indicate strong multicollinearity among several temperature- and precipitation-related predictors. 

 Bio1 Bio2 Bio3 Bio4 Bio5 Bio6 Bio7 Bio8 Bio9 Bio10 Bio11 Bio12 Bio13 Bio14 Bio15 Bio16 Bio17 Bio18 Bio19 Aspect Slope TRI 

Bio1                       

Bio2 0.9                      

Bio3 0.93 0.82                     

Bio4 0.47 0.15 0.62                    

Bio5 0.98 0.96 0.86 0.27                   

Bio6 0.98 0.83 0.95 0.54 0.93                  

Bio7 0.32 0.64 0.08 0.56 0.51 0.17                 

Bio8 0.78 0.61 0.71 0.68 0.7 0.76 0.1                

Bio9 0.74 0.69 0.67 0.13 0.78 0.77 0.31 0.36               

Bio10 0.99 0.93 0.9 0.34 0.99 0.97 0.41 0.71 0.78              

Bio11 1 0.88 0.95 0.54 0.96 0.99 0.25 0.8 0.73 0.98             

Bio12 0.53 0.31 0.65 -0.9 0.37 0.55 0.32 0.79 0.09 0.41 0.58            

Bio13 0.65 0.52 0.71 -0.8 0.55 0.64 0.03 0.81 0.29 0.55 0.69 0.91           

Bio14 0.36 0.2 0.62 0.62 0.23 0.45 0.45 0.36 0.24 0.31 0.41 0.68 0.54          

Bio15 0.63 0.66 0.49 0.25 0.67 0.57 0.48 0.55 0.69 0.62 0.63 0.28 0.62 -0.05         

Bio16 0.66 0.52 0.72 0.82 0.55 0.65 0.06 0.8 0.3 0.56 0.7 0.91 1 0.53 0.61        

Bio17 0.31 0.07 0.54 0.81 0.12 0.38 0.58 0.52 0.07 0.21 0.37 0.87 0.63 0.87 -0.15 0.63       

Bio18 0.47 0.31 0.5 0.79 0.35 0.45 0.11 0.83 0.04 0.36 0.51 0.93 0.91 0.4 0.39 0.9 0.67      

Bio19 0.64 0.44 0.8 0.82 0.5 0.69 0.29 0.72 0.31 0.56 0.69 0.92 0.81 0.85 0.23 0.81 0.9 0.73     

Aspect 0.59 0.41 0.56 0.61 0.48 0.57 0.05 0.75 0.13 0.52 0.61 0.71 0.61 0.34 0.21 0.6 0.59 0.68 0.69    

Slope 0.48 0.59 0.41 0.15 0.53 -0.4 -0.5 0.53 0.41 -0.48 -0.48 -0.39 -0.57 -0.14 -0.66 -0.54 -0.11 -0.46 -0.41 -0.56   

TRI 0.71 0.59 0.69 0.34 0.66 0.71 -0.1 0.63 0.46 -0.72 -0.71 -0.46 -0.35 -0.48 -0.11 -0.34 -0.49 -0.3 -0.67 -0.58 0.27  
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