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Abstract 
Results and recommendations, based on data interpretation, in the research of social 

sciences are generated on precise measurements. However, advancement of numerical 

sciences showcases the unattainability of precise measurement of continuous phenomena 

due to the recent conception of fuzziness. Measurement results establish through 

educational research are obtained mostly by employing classroom experiments, survey-

questionnaires and/or standardized-questionnaire; whereas, available literature also 

suggests the occurrence of fuzziness in classical measurement and questionnaire 

responses instead of preciseness. Therefore, in educational research it is recommended to 

employ latest measurement technique, i.e. fuzzy numbers instead of precise numbers, 

which will authenticate the reliability and appropriateness of obtained results.  
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Introduction  

Research in social sciences circumambient all the areas pertaining to qualitative 

and quantitative features. Data collection, analysis, and interpretation are central 

characteristics of research in social sciences. To deal with data in more 

systematic, effective, and efficient ways, various qualitative and quantitative 

tools have been developed, among which questionnaire is a prime tool; yet the 

issue of vagueness is unattended in it. Research in social sciences predominantly 

relies on questionnaires and interviews for data collection. These research 

instruments often encounter linguistic vagueness; hence, the issue is regarded as a 

challenging task for the social scientists to deal with. Certainly, most of the social 

sciences’ variables are difficult to categorize precisely. For instance, if a question 

item solicits the honesty of a person; it is always difficult to obtain exact degree 

of the answer. It would either be in Yes/No or Agree/disagree and would not tell 

the precise level of agreement or disagreement of the respondent. The rationale 

here is to lesson, if not eliminate, the factor of fuzziness in questionnaire or any 

other research instrument. The more precise answer we obtain; the more accurate 
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analysis will be generated, which would help in reducing the element of 

subjectivity in data collection and interpretation.  It is a buzz and newly 

established phenomenon in research of social sciences to pursue enhanced and 

integrated research tools in addressing the problem of vagueness or fuzziness. 

This phenomenon also promotes the element of preciseness especially in the 

content of the questionnaires (Arfi, 2010).  

 

Furthermore, in the real world of measurements one cannot get a precise 

measurement of irregular phenomenon like depth of a river because of its water 

level fluctuation. In the same way one cannot find a precise criterion between 

high or low temperature, good or poor student, effective or ineffective teacher 

etc. keeping in view the same Viertl (2006) concluded that there are two types of 

uncertainties in measurements: variation among the observations and imprecision 

of individual observations called fuzziness.  

 

All classical models cover variation among the observations, and ignore 

imprecision of individual observations. According to Zadeh (1965) another 

method of modeling was necessary to consider the imprecision of a single 

measurement. To overcome this problem, the idea of fuzzy sets was first 

introduced by Zadeh in 1965. According to Viertl (2011) some preliminary 

concepts of fuzzy set theory are explained below  

 

Fuzzy Number 

Let 𝑓∗ represents a fuzzy number, determined by the characterizing function 

denoted by 

𝜓(·), which is a real function of real variable satisfying the following conditions: 

 

1. 0 ≤ 𝜓(·) ≤ 1  ∀ 𝑓 ∈ ℝ 

2. 𝜓(·) has bounded support, i.e. 

          supp[ξ(·)] ∶= { 𝑓 ∈ ℝ :  ξ(𝑓) > 0} ⊆ [𝑎 , 𝑏]. 
3. For all 𝛿 ∈ (0 , 1]  the so-called 𝛿-cuts, i.e.  𝐶𝛿(𝑓∗) ∶= [ 𝑓 ∈ ℝ :  ξ(𝑓) ≥ 

𝛿]  is a finite union of non-empty and compact intervals 

      𝐶𝛿(𝑓∗) = ⋃ [𝑎δ,𝑗 ;   𝑏δ,𝑗]
𝑘𝛿
𝑗=1  ≠  Ø       ∀ 𝛿 ∈ [0 , 1]. 

 

Construction Lemma 

Let 𝒜𝛿   ⋃ [𝑎δ,𝑗 ;   𝑏δ,𝑗]
𝑘𝛿
𝑗=1  shortly denoted as (𝒜𝛿;  𝛿 ∈ (0 , 1])  be a nested 

family of non-empty subsets of ℝ. Then the characterizing function of the 

generated fuzzy number is given by 

                   𝜓(𝑓) = sup{𝛿 ·  𝐼𝒜𝛿
(𝑓):  𝛿 ∈ (0 , 1]}        ∀ 𝛿 ∈ [0 , 1].  

For details compare (Viertl and Hareter, 2006). 
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Fuzzy Vector 

Let Ψ(·,···,·) represents vector-characterizing function of the 𝑘-dimensional 

fuzzy vector 𝑓∗. Which is a real function of 𝑘 real variables 𝑓1,  𝑓2, … , 𝑓𝑘 obeying 

the following conditions: 

1. Ψ(·,···,·): ℝ𝑘  → [0 , 1] 
2. The support of Ψ(·,···,·) is a bounded set 

3. Its 𝛿-cuts 𝐶𝛿 (𝑓∗) ≔ {𝑓  ∈  ℝ𝑘 ∶   Ψ (𝑓)  ≥  𝛿}        ∀ 𝛿 ∈ (0 , 1]  is non-

empty, bounded, and a finite union of simply connected sets. 

 

Extension Principle 

It’s the generalized form of an arbitrary function  ℱ: 𝒩 → ℳ for fuzzy 

argument value 𝑥∗ in 𝒩 with membership function 𝜂: 𝒩 → [0 , 1].  
Then the fuzzy value 𝑦∗ =  ℱ(𝑥∗) is the fuzzy element in ℳ, and its 

membership function 𝜗(·) is defined by 

                    𝜗(𝑦) = {
sup{𝜂(𝑥): 𝑥 ∈ 𝒩, ℱ(𝑥) = 𝑦} 𝑖𝑓 ∃ 𝑥: ℱ(𝑥) = 𝑦

0                                                       𝑖𝑓 ∄𝑥: ℱ(𝑥) = 𝑦   
} 

          ∀ 𝑦 ∈ 𝑁. 

 

For details see (Klir and Yuan, 1995). 

 

Regarding fuzziness in educational research only few references can be found 

like using fuzzy logic in educational measurement: The case of portfolio 

assessment by Fourali (1997) explained the idea of fuzzy logic in decision 

making through various examples. Furthermore, he illustrated his procedure 

through numerical examples. In a study by Cole and Persi-chitte (2000) 

generalized the idea of “Pressley and McCormick” and “Kosko” for the cognitive 

mapping through graphical representation. As learning is not a precise criterion, 

therefore; for the cognitive mapping instead of classical techniques fuzzy 

mapping gives more suitable results. According to Bassey (2001), some of the 

procedures of prediction in educational fields under fuzzy environment. He 

explained his ideas through the scientific and social experiments in such a way 

that scientific experiments give same result under same environment, but this 

cannot be hold in social behaviors.  This study focuses on developing a 

framework or a strategy, which covers the element of fuzziness of the responses 

in a questionnaire/inventory or tool and makes the data more authentic and 

precise. 

 

Descriptive Statistics and Fuzzy Data 

The first step in educational research is to draw a histogram of the frequency 

distribution. For precise measurements it is very common and almost every 
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package has the option to draw it, but in case of fuzzy responses instead of 

classical histogram fuzzy histogram are more suitable. 

Let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  be 𝑛 fuzzy observations, for these observations there are 𝑛 

classes, i.e. 

𝐾𝑗 ,   𝑗 = 1(1)𝑛. Then the characterizing function of 𝑗𝑡ℎ class for the relative 

frequency distribution is obtained by the 𝛿-cuts through mentioned construction 

lemma.  

𝐶𝛿(ℎ𝑛
∗  (𝐾𝑗)) = [ℎ𝑛,𝛿  (𝐾𝑗),   ℎ𝑛,𝛿(𝐾𝑗)]       ∀ 𝛿 ∈ (0 , 1]           (1) 

whereℎ𝑛,𝛿  (𝐾𝑗) represents lower end, while ℎ𝑛,𝛿(𝐾𝑗) is the upper end of the 

corresponding  

𝛿-cuts, which are obtained as: 

ℎ𝑛,𝛿  (𝐾𝑗) =  
# {𝑥𝑖

∗: 𝐶𝛿(𝑥𝑖
∗) ⊆  𝐾𝑗 }

𝑛
                     (2) 

and 

ℎ𝑛,𝛿(𝐾𝑗) =  
# {𝑥𝑖

∗: 𝐶𝛿(𝑥𝑖
∗) ≠ ∅ }

𝑛
                       (3) 

See (Viertl, 2011).  

 

After collection of data for the statistical inference descriptive statistics has prime 

importance. 

 

For fuzzy observation 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  arithmetic mean can be defined as: 

Let 𝐶𝛿(𝑥𝑖
∗ (𝐾𝑗)) = [𝑥𝑖,𝛿  ,   𝑥𝑖,𝛿]       ∀ 𝛿 ∈ (0 , 1],    𝑖 = 1(1)𝑛, representing the 𝛿-

cuts then the corresponding arithmetic mean can be obtained in the following 

way 

𝑥∗ =  
1

𝑛
[𝑥1

∗ + 𝑥2
∗ + … + 𝑥𝑛

∗ ] 

𝑥∗ =  
1

𝑛
∑ 𝑥𝑖

∗

𝑛

𝑖=1

                        (4) 

Simply, lower and upper level 𝛿-cuts can be obtained as, 

𝐶𝛿(𝑥∗) = [
1

𝑛
∑ 𝑥𝑖,𝛿

𝑛

𝑖=1

 ,   
1

𝑛
∑ 𝑥𝑖,𝛿

𝑛

𝑖=1

  ]        ∀ 𝛿 ∈ (0 , 1]            

and characterizing function is obtained through construction lemma. 

For skewed or ordinal data median is the appropriate measure of central 

tendency, according to (De S´aa et al., 2015) for fuzzy data median (𝑀𝑒𝑑( 𝑥∗ ̃ )) 

based on the 𝛿-cuts can be obtained in the following way 

𝐶𝛿(𝑀𝑒𝑑( 𝑥∗ ̃ )) = [  𝑀𝑒𝑑(�̃�) , 𝑀𝑒𝑑(�̃�)  ]       ∀ 𝛿 ∈ (0 , 1]        (5)           
and characterizing function of the fuzzy estimate of median can be obtained 

through the mentioned construction lemma. It is obvious that only central 
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tendency cannot represent the data very well so in addition to this variation of the 

data is also necessary for data representation. Viertl (2014) states that based on 

fuzzy observations; fuzzy estimates of the sample standard deviation are denoted 

by 𝑠∗ and is given as 

𝐶𝛿(𝑠∗) =  [ min
𝑥1,𝑥2,…,𝑥𝑛∈𝐶𝛿[𝑥1

∗]𝑋𝐶𝛿[𝑥2
∗]𝑋…𝑋𝐶𝛿[𝑥𝑛

∗ ]
  𝑠   , max

𝑥1,𝑥2,…,𝑥𝑛∈𝐶𝛿[𝑥1
∗]𝑋𝐶𝛿[𝑥2

∗]𝑋…𝑋𝐶𝛿[𝑥𝑛
∗ ]

  𝑠 ] 

∀ 𝛿 ∈ (0 , 1]        (6) 

Where  

𝑠𝛿 =  min
𝑥1,𝑥2,…,𝑥𝑛∈𝐶𝛿[𝑥1

∗ ]𝑋𝐶𝛿[𝑥2
∗]𝑋…𝑋𝐶𝛿[𝑥𝑛

∗ ]
  𝑠 

and 

𝑠𝛿 =  max
𝑥1,𝑥2,…,𝑥𝑛∈𝐶𝛿[𝑥1

∗]𝑋𝐶𝛿[𝑥2
∗]𝑋…𝑋𝐶𝛿[𝑥𝑛

∗ ]
  𝑠 

 

Inferential Statistics and Fuzzy Data 

Estimation and testing of hypothesis is core of the statistical procedures. The 

most common techniques which are generalized for fuzzy data are presented as: 

Wu (2009) states that based on fuzzy measurements, confidence interval 

estimation for the fuzzy data is presented. 

The lower and upper ends can be defined as: 

[ 𝑥𝑖,𝛿 − 𝑧𝛼
2⁄

𝑠𝛿

√𝑛
   ,     𝑥𝑖,𝛿 + 𝑧𝛼

2⁄

𝑠𝛿

√𝑛
 ]  = 100(1 − 𝛼)    ∀ 𝛿 ∈ (0 , 1]    

 

and 

[𝑥𝑖,𝛿 − 𝑧𝛼
2⁄  

𝑠𝛿

√𝑛
   , 𝑥𝑖,𝛿 +  𝑧𝛼

2⁄  
𝑠𝛿

√𝑛
 ]   =  100(1 − 𝛼)    ∀ 𝛿 ∈ (0 , 1]  

 

According to Filzmoser and Viertl (2004) for fuzzy observations the fuzzy test 

statistics and fuzzy p-value are generalized in the following way: 

Let 𝑡∗ =  𝒢 (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗  ) is denoting fuzzy test statistics having characterizing 

function 𝜓(𝑡), then their corresponding 𝛿-cuts are defined as: 

𝐶𝛿(𝑡∗) = [𝑡1,𝛿  ,   𝑡2,𝛿]       ∀ 𝛿 ∈ (0 , 1] 
For a precise p-value the decision based on fuzzy test statistic is given as 

(a) 𝑝 = 𝑃 [𝑇 ≤ 𝑡 = max(𝑠𝑢𝑝𝑝𝜓(·)) ]       (b) 𝑝 = 𝑃 [𝑇 ≥ 𝑡 =
min(𝑠𝑢𝑝𝑝𝜓(·)) ] 

Using 𝛿-cuts of the fuzzy test statistics 𝑡∗ the corresponding 𝛿-cuts of the fuzzy 

p-value (𝑝∗) is obtained in the following way 

𝐶𝛿(𝑝∗) = [𝑃(𝑇 ≤ 𝑡1,𝛿) , 𝑃(𝑇 ≤  𝑡2,𝛿)]       ∀ 𝛿 ∈ (0 , 1] 

Or 

𝐶𝛿(𝑝∗) = [𝑃(𝑇 ≥ 𝑡2,𝛿) , 𝑃(𝑇 ≥  𝑡1,𝛿)]       ∀ 𝛿 ∈ (0 , 1]. 
Comparison of two or more than two population parameters are one of the 

prominent aspects of educational research. For this purpose, one cannot use 
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pairwise comparison of the populations means. According to Wu (2007). The 

best suited technique is analysis of variance (ANOVA), for fuzzy data analysis of 

variance (ANOVA). 

  

Let we have 𝑇𝑖𝑗
∗   the observation on 𝑖𝑡ℎ treatment and 𝑗𝑡ℎ replicate, where 𝑖 =

1(1)𝑟, 𝑗 = 1(1)𝑛𝑖, and 𝑛 =  ∑ ,
𝑛𝑖
𝑗=1  then the corresponding ANOVA model for 

fuzzy observations can be written as 

𝑇𝑖𝑗
∗ =  𝜇𝑖

∗ + ∈𝑖
∗ 

This model can be simply written as  

Total Sum of Squares = Sum of Squares of Treatment + Sum of Squares of Error 

𝑆𝑆𝑇𝑜𝑡 = 𝑆𝑆𝑇𝑟 + 𝑆𝑆𝐸 

Consider the hypothesis that 

𝐻0
∗: 𝜇1

∗ = 𝜇2
∗ = ⋯ = 𝜇𝑟

∗ 

𝐻1
∗: 𝑁𝑜𝑡 𝑎𝑙𝑙 𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙 

The corresponding lower and upper 𝛿-cuts of the fuzzy observations 𝑇𝑖𝑗
∗  are 

denoted by 𝑇𝑖𝑗𝛿
𝐿  and 𝑇𝑖𝑗𝛿

𝑈  respectively. 

Total of the 𝑖𝑡ℎ treatment and grand total is obtained in the following way 

𝑇𝑖.
∗ = ⊕𝑗=1

𝑛𝑖 𝑇𝑖𝑗
∗  and 𝑇..

∗ = ⊕𝑖=1
𝑟 ⊕𝑗=1

𝑛𝑖 𝑇𝑖𝑗
∗  

Similarly, lower and upper 𝛿-cuts of the 𝑖𝑡ℎtreatment and grand total is obtained 

as: 

𝑇𝑖.𝛿
𝐿 =  ∑ 𝑇𝑖𝑗𝛿

𝐿𝑛𝑖
𝑗=1  and  𝑇𝑖.𝛿

𝑈 =  ∑ 𝑇𝑖𝑗𝛿
𝑈𝑛𝑖

𝑗=1          ∀ 𝛿 ∈ (0 , 1] 

𝑇..𝛿
𝐿 = ∑ .𝑟

𝑖=1  ∑ 𝑇𝑖𝑗.𝛿
𝐿𝑛𝑖

𝑗=1  and  𝑇..𝛿
𝑈 =

∑ .𝑟
𝑖=1  ∑ 𝑇𝑖𝑗.𝛿

𝑈𝑛𝑖
𝑗=1          ∀ 𝛿 ∈ (0 , 1] 

 

The lower and upper ends of 𝛿-cuts of corresponding sum of squares are obtained 

in the following way 

𝑆𝑆𝑇𝑜𝑡𝛿
𝐿 = ∑.

𝑟

𝑖=1

 ∑[𝑇𝑖𝑗𝛿
𝐿 ]

2

𝑛𝑖

𝑗=1

− 
[𝑇..𝛿

𝐿 ]2

𝑛
  

𝑆𝑆𝑇𝑜𝑡𝛿
𝑈 = ∑.

𝑟

𝑖=1

 ∑[𝑇𝑖𝑗𝛿
𝑈 ]

2

𝑛𝑖

𝑗=1

− 
[𝑇..𝛿

𝑈 ]2

𝑛
 

𝑆𝑆𝑇𝑟𝛿
𝐿 = ∑

[𝑇𝑖.𝛿
𝐿 ]2

𝑛𝑖

𝑟

𝑖=1

 −  
[𝑇..𝛿

𝐿 ]2

𝑛
 

𝑆𝑆𝑇𝑟𝛿
𝑈 = ∑

[𝑇𝑖.𝛿
𝑈 ]2

𝑛𝑖

𝑟

𝑖=1

 −  
[𝑇..𝛿

𝑈 ]2

𝑛
 

And 
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𝑆𝑆𝐸𝛿
𝐿 = ∑.

𝑟

𝑖=1

 ∑[𝑇𝑖𝑗𝛿
𝐿 ]

2

𝑛𝑖

𝑗=1

−  ∑
[𝑇𝑖.𝛿

𝐿 ]2

𝑛𝑖

𝑟

𝑖=1

 

𝑆𝑆𝐸𝛿
𝑈 = ∑.

𝑟

𝑖=1

 ∑[𝑇𝑖𝑗𝛿
𝑈 ]

2

𝑛𝑖

𝑗=1

−  ∑
[𝑇𝑖.𝛿

𝑈 ]2

𝑛𝑖

𝑟

𝑖=1

 

 

Now the relation can be written as 

𝑆𝑆𝑇𝑜𝑡𝐿 = 𝑆𝑆𝑇𝑟𝐿 + 𝑆𝑆𝐸𝐿 

𝑆𝑆𝑇𝑜𝑡𝑈 = 𝑆𝑆𝑇𝑟𝑈 + 𝑆𝑆𝐸𝑈 

Now the mean square is obtained as 

𝑀𝑆𝑇𝑟𝛿
𝐿 =  

𝑆𝑆𝑇𝑟𝛿
𝐿

𝑟−1
  and  𝑀𝑆𝑇𝑟𝛿

𝑈 =  
𝑆𝑆𝑇𝑟𝛿

𝑈

𝑟−1
          ∀ 𝛿 ∈ (0 , 1] 

And 

𝑀𝑆𝐸𝑟𝛿
𝐿 =  

𝑆𝑆𝐸𝑟𝛿
𝐿

𝑛−𝑟
  and  𝑀𝑆𝐸𝑟𝛿

𝑈 =  
𝑆𝑆𝐸𝑟𝛿

𝑈

𝑛−𝑟
          ∀ 𝛿 ∈ (0 , 1] 

Now the required lower and upper ends of the 𝛿-cuts of 𝐹-test are obtained as 

𝐹𝛿
𝐿 =  

𝑀𝑆𝑇𝑟𝛿
𝐿

𝑀𝑆𝐸𝑟𝛿
𝐿  and  𝐹𝛿

𝑈 =  
𝑀𝑆𝑇𝑟𝛿

𝑈

𝑀𝑆𝐸𝑟𝛿
𝑈              ∀ 𝛿 ∈ (0 , 1] 

From the above equations corresponding lower and upper ends of the generating 

family of intervals, and the characterizing function is obtained through 

construction lemma. Furthermore, to quantify the associated factors of the 

dependent variable multiple regression model is a suitable choice. For this 

purpose, Bargiela et al., (2007) is a significant contribution for fuzzy data. 

 

For Ordinal Responses 

Research in social sciences is as indispensable as in pure sciences. It is normally 

conducted in social setting and undertake the areas of human constructs and traits 

like behavior, attitude, feelings, emotions, IQ, EQ etc. Standardized 

questionnaires/inventory/scale by Baron, Hamilton, Beck and way more are 

frequently used in the research of social sciences.  

 

Methodology, in research, plays a pivotal role in data collection, which is usually 

based on interviews and/or questionnaires. Mostly closed-ended items are used, 

which could either be standardized or self-developed questionnaires. Sometimes 

a questionnaire is slightly modified in the light of standardized 

questionnaire/scale/inventory. Standardization is a procedure of designing and 

employing procedural and technical criteria or benchmark and aids to enhance 

reliability, validity, and excellence.  The standardized research instrument for 

data collection normally solicits the respondents on 3, 5, 7, 9, or 11-point rating 

scale responses. For instant, in 5-point rating scale (SDA, DA, UD, A, SA) a 

respondent has the provision to opt for one of the response options, which reflects 
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his/her level of confidence in that specific question item, e.g. if a respondent 

selects strongly disagree (SDA) for a certain item that carries 1-20 % of the total 

weightage then determining the level of confidence of the respondent for that 

specific item will be difficult as if its 1% or 20 % or in between the two limits. 

This reflects the fuzziness of the response, which affects the results of the 

collected data.  

 

Given below in Figure-1 in which solid lines show the characterizing functions of 

fuzzy responses whereas, the dashed lines show the precise responses. 

 

 
 

In the available literature researchers (De S´aa et al., 2015), (Lubiano et al., 

2016a), (Lubiano et al., 2016b) suggest analyzing the data obtained on fuzzy 

rating scales, which are more appropriate to the realistic nature of data.  

 

Conclusions 

Recent advancement in numerical and measurement sciences has witnessed the 

unattainability of precise numbers on continuous scale due to the notion of 

fuzziness. Similarly, the responses on questionnaires (Agree or Disagree etc.) are 

always of linguistic nature and cannot be precisely measured. Therefore, use of 

fuzzy numbers in the research of social sciences would subside estimation error 

and establish more reliable and appropriate results. Rating scale techniques for 

data collection need to be modified on fuzzy scales and the analysis techniques 

developed for fuzzy data is highly recommended to be used to cover both types 

of variations: fuzziness and stochastic. 
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