Integrated Petrographical, Mineralogical, and Geochemical Investigation to Evaluate Diagenesis of Sandstone: A Case Study of the Oligocene Nari Formation from Southern Kirthar Range, Pakistan
Keywords:
Keywords: Petrography; Geochemistry; Diagenesis; Sandstone; Nari Formation; Kirthar Range of Pakistan.Abstract
In this work, the sandstone facies of the Nari Formation from the Nari River Section in Southern Kirthar
Range, Pakistan are studied to decipher their diagenetic processes, stages, and associated tectonic events
using petrographic, mineralogical, and geochemical analysis. The field study encompasses outcrop
observations, section measurement and sampling. Laboratory work includes thin-section preparation and
analysis of the samples under a petrographic microscope, X-Ray Diffraction, Scanning Electron Microscopy,
and Energy Dispersive X-Ray Spectroscopy. During this study, different diagenetic processes, such as
cementation, compaction, quartz dissolution, quartz overgrowth, and grain deformation porosity are
identified. Results indicate that iron oxide is the most abundant cementing material in samples followed by
calcite and dolomite. The cement has completely destroyed the primary porosity. The sandstone of the Nari
Formation indicates poor to well compaction as exhibited by grain contacts. Identified diagenetic processes
are classified into three diagenetic stages, which are eogenesis, mesogenesis and telogenesis. Eogenesis is
contemporary to the deposition of Nari Formation. Nari Formation experienced mesogenesis during the
Pliocene. Deformation and uplifting of the north-western margin of the Indian Plate during the Pliocene-
Pleistocene brought the Nari Formation into the regime of telogenesis. This study suggests that the diagenesis
of the Nari Formation is controlled by the Oligocene-Pleistocene tectonic evolution of the study area. This
integrated and comprehensive investigation not only provides important constraints on the diagenetic history
of the Nari Formation but also accentuates the crucial role played by the Oligocene-Pleistocene tectonic
evolution to control the diagenesis of the Nari Formation in the study area. The present work will serve as a
demonstration of the critical interaction between diagenetic processes and tectonic events in the evolution of
sedimentary formations thereby offering valuable insights for both academic understanding and geological
resource exploration.
References
Adamolekun, O.J., Busch, B., Oluwajana, O.A., Suess, M.P., and Hilgers, C., 2023. Diagenetic evolution of continental to shallow marine Mesozoic-Cenozoic deposits, Eastern Dahomey Basin, Nigeria: Implications for reservoirquality. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften (ZDGG) 174.
Ahmed, Z., Khan, A.S., and Ahmed, B., 2020. Sandstone Composition and Provenance of the Nari Formation, Central Kirthar Fold belt, Pakistan. Pakistan Journal of Geology, 4, 90–96. https://doi.org/10.2478/pjg-2020-0010
Ajdukiewicz, J.M., and Lander, R.H., 2010. Sandstone Reservoir Quality Prediction: The state of the art. American Association of Petroleum Geologist Bulletin, 94, 1083–1091.
Anees, A., Zhang, H., Ashraf, U., Wang, R., Thanh, H.V., Radwan, A.E., Ullah, J., Abbasi, G.R., Iqbal, I., and Ali, N., 2022. Sand-ratio distribution in an unconventional tight sandstone reservoir of Hangjinqi area, Ordos Basin: Acoustic impedance inversion-based reservoir quality prediction. Frontiers in Earth Science, 10, 1018105.
Ashraf, U., Zhang, H., Anees, A., Ali, M., Zhang, X., Shakeel Abbasi, S., and Nasir Mangi, H., 2020. Controls on reservoir heterogeneity of a shallow-marine reservoir in Sawan Gas Field, SE Pakistan: Implications for reservoir quality prediction using acoustic impedance inversion. Water, 12, 2972. 18
Auden, B.A., 1974. Afghanistan-west Pakistan. In: Spencer, A.M. (Ed.), Mesozoic-Orogenic Belts. Scottish Academic Press, Edinburgh, 235–253.
Baiyegunhi, C., Liu, K., and Gwavava, O., 2017. Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa. Minerals, 7, 1–26. https://doi.org/10.3390/min7060088
Baiyegunhi, T.L., Liu, K., Gwavava, O., and Baiyegunhi, C., 2020. Impact of Diagenesis on the Reservoir Properties of the Cretaceous Sandstones in the Southern Bredasdorp Basin, Offshore South Africa. Minerals, 10, 1–33.
Bannert, D., Cheema, A., Ahmed, A., and Schaffer, U., 1992. The Structural Development of the Western Fold Belt, Pakistan. Geologisches Jahrbuch Reihe, B80, 3–60.
Bashir, A., Ali, M., Patil, S., Aljawad, M.S., Mahmoud, M., Al-Shehri, D., Hoteit, H., and Kamal, M.S., 2024. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth-Science Reviews, 249, 1–16. https://doi.org/10.1016/j.earscirev.2023.104672
Bello, A.M., Usman, M.B., Abubakar, U., Al-Ramadan, K., Babalola, L.O., Amao, A.O., Yandoka, B.M.S., Kachalla, A., Kwami, I.A., and Ismail, M.A., 2022. Role of diagenetic alterations on porosity evolution in the cretaceous (Albian-Aptian) Bima Sandstone, a case study from the Northern Benue Trough, NE Nigeria. Marine and Petroleum Geology, 145, 105851.
Bender, F.K., 1995. Paleogeographic and Geodynamic Evolution. In: Bender, F.K., Raza, H.A. (Eds.), Geology of Pakistan. Gebruder Borntraeger, 162–181.
Bender, F.K., and Raza, H.A. (Eds.), 1995. Geology of Pakistan. Gebrude Borntraeger. Bickle, M.J., 2009. Geological carbon storage. Nature Geoscience, 2, 815–818. https://doi.org/10.1038/ngeo687
Bigi, S., Carminati, E., Aldega, L., Trippetta, F., Kavoosi, M.A., 2018. Zagros fold and thrust belt in the Fars province (Iran) I: Control of thickness/rheology of sediments and pre-thrusting tectonics on structural style and shortening. Marine and Petroleum Geology 91, 211–224. https://doi.org/10.1016/j.marpetgeo.2018.01.005
Bilal, A., Yang, R., Fan, A., Mughal, M.S., Li, Y., Basharat, M., and Farooq, M., 2022. Petrofacies and diagenesis of Thanetian Lockhart Limestone in the Upper Indus Basin (Pakistan): Implications for the Ceno-Tethys Ocean. Carbonates and Evaporites, 37, 78.
Bjorlykke, K., 1988. Diagenesis. In: Chilingarian, G.V., Wolf, K.H. (Eds.), Bloch, S., Lander, R.H., Bonell, L., 2002. Anomalously high porosity and permeability in deeply buried sandstones reservoirs. Origin and predictability. American Association of Petroleum Geologist Bulletin, 86, 301–328.
Boggs, S., 2009. Petrology of Sedimentary Rocks. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511626487.
Chapelle, F.H., 1993. Ground-Water Microbiology and Geochemistry. John Wiley and Sons, NewYork.
Cheema, M.R., Ahmed, H., and Raza, S.M., 2009. Cenozoic. In: Shah, S.M.I. (Ed.), Stratigraphy of Pakistan. Geological Survey of Pakistan, 237–308.
Chen, B., Harp, D.R., Zhang, Y., Oldenburg, C.M., and Pawar, R.J., 2023. Dynamic risk assessment for geologic CO2 sequestration. Gondwana Research 122, 232–242. https://doi.org/10.1016/j.gr.2022.08.002
Chima, P., Baiyegunhi, C., Liu, K., and Gwavava, O., 2018. Diagenesis and rock properties of sandstones from the Stormberg Group, Karoo Supergroup in the Eastern Cape Province of South Africa. Open Geosciences, 10, 740–771. https://doi.org/10.1515/geo-2018-0059
Compton, R.R., 1962. Manual of Field Geology. John Wiley and Sons, New York. Dar, Q.U.Z.Z., Pu, R., Baiyegunhi, C., Shabeer, G., Ali, R.I., Ashraf, U., Sajid, Z., and Mehmood, M., 2022. The impact of diagenesis on the reservoir quality of the early Cretaceous Lower Goru sandstones in the Lower Indus Basin, Pakistan. Journal of Petroleum Exploration and Production Technology, 1–16.
Dars, H., Agheem, M.H., Solangi, S.H., Markhand, A.H., Sahito, A.G., Khokhar, Q.D., Thebo, G.M., and Shaikh, S.A., 2020. Effects of Diagenesis on the Reservoir Quality in the Upper Sands of Lower Goru Formation, Badin Block, Lower Indus Basin, Pakistan. International Journal of Economic and Environmental Geology, 11, 22–30.
Ding, L., Qasim, M., Jadoon, I.A.K., Khan, M.A., Xu, Q., Cai, F., Wang, H., Baral, U., and Yue, Y., 2016. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letters, 455, 49–61. https://doi.org/10.1016/j.epsl.2016.09.003
Duncan, P.M., and Sladen, W.P., 1884. Tertiary and Upper Cretaceous fossils of western Sind; Fasc. 4, the fossil Echinoidea from the Nari Series, the Oligocene formation of western Sind. Geological Survey of India Memoir Paleontology Indica, Series, 14(1), 242–272.
Farhaduzzaman, M., Islam, M.A., Abdullah, W.H., and Islam, M.S., 2015. Petrography and Diagenesis of the Tertiary Surma Group Reservoir Sandstones, Bengal Basin, Bangladesh. Universal Journal of Geoscience, 3, 103–117. https://doi.org/10.13189/ujg.2015.030304
Ghani, H., Hinsch, R., Sobel, E.R., and Glodny, J., 2023. Oligocene to Pliocene structural evolution of the frontal Kirthar fold and thrust belt of Pakistan. Journal of Structural Geology, 176, 1–10. https://doi.org/10.1016/j.jsg.2023.104961
Gier, S., Worden, R.H., Johns, W.D., and Kurzweil, H., 2008. Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology, 25, 681–695. https://doi.org/10.1016/j.marpetgeo.2008.06.001
Hakro, A.A.A.D., Samtio, M.S., Rajper, R.H., and Mastoi, A.S., 2022. Major Elements of Nari Formation Sandstone from Jungshahi Area of Southern Indus Basin, Pakistan. Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences, 65A, 248–259.
Hakro, A.A.A.D., Xiao, W., Mastoi, A.S., Yan, Z., Samtio, M.S., and Rajper, R.H., 2021. Grain size analysis of the Oligocene Nari Formation sandstone in the Laki Range, southern Indus Basin, Pakistan: Implications for depositional setting. Geological Journal, 56, 5440–5451. https://doi.org/10.1002/gj.4251
Halepoto, A.A., Agheem, M.H., Lashari, R.A., Hakro, A.A.A.D., and Ahmeda, 2023. Development and Synclinal-Anticlinal Breakthrough of Fault-Propagation Fold: Insights from Borr Dhoro Section of the Ranikot Anticline, Southern Kirthar Fold Belt, Pakistan. Sindh University Research Journal (Science Series), 55, 32–41. https://doi.org/https://doi.org/10.26692/surj-ss.v55i01.4179
Halepoto, A.A., Agheem, M.H., Wahid, S., Hakro, A.A.A.D., Lashari, R.A., and Ahmedani, S.B., 2022. Structural Analysis of the Ranikot Anticline, Southern Kirthar Fold Belt, Pakistan. Sindh University Research Journal (Science Series), 54, 21–27. https://doi.org/https://doi.org/10.26692/surj-ss.v54i04.4350
Hansen, H.N., Haile, B.G., Müller, R., and Jahren, J., 2023. New direction for regional reservoir quality prediction using machine learning-Example from the Stø Formation, SW Barents Sea, Norway. Journal of Petroleum Science and Engineering, 220, 111149.
Hinsch, R., Asmar, C., Nasim, M., Abbas, M.A., and Sultan, S., 2019. Linked thick-to thinskinned inversion in the central Kirthar Fold Belt of Pakistan. Solid Earth, 10, 425–446. https://doi.org/10.5194/se-10-425-2019
Honarmand, J., and Amini, A., 2012. Diagenetic processes and reservoir properties in the ooid grainstones of the Asmari Formation, Cheshmeh Khush Oil Field, SW Iran. Journal of Petroleum Science and Engineering, 81, 70–79. https://doi.org/10.1016/j.petrol.2011.12.022
Hunting Survey Corporation, 1960. Reconnaissance Geology of Part of West Pakistan. A Colombo Plan Co-operative Project, Toronto, Canada.
Imam, M.B., and Shaw, H.E., 1985. The diagenesis of Neogene clastic sediments from the Bengal Basin, Bangladesh. Journal of Sedimentary Petrology, 55, 665–671.
Jadoon, I.A.K., Ding, L., Nazir, J., Idrees, M., and Jadoon, S. ur R.K., 2020. Structural interpretation of frontal folds and hydrocarbon exploration, western sulaiman fold belt, Pakistan. Marine and Petroleum Geology, 117, 104380. https://doi.org/10.1016/j.marpetgeo.2020.104380
Jadoon, S.-R.K., Ding, L., Jadoon, I.A.K., Nazir, J., and Ping, F., 2024. Seismic data, crosssection balancing, and hydrocarbon prospectivity of the western Sulaiman fold belt, northwest Pakistan. Marine and Petroleum Geology, 160, 106644. https://doi.org/10.1016/j.marpetgeo.2023.106644
Kazmi, A.H., 1979. Active Fault Systems in Pakistan. In: Farah, A., De Jong, K.A. (Eds.), Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 285–304.
Kazmi, A.H., Jan, M.Q., 1997. Geology and Tectonics of Pakistan. Graphic Publishers, Karachi.
Kazmi, A.H., and Rana, R.A., 1982. Tectonic Map of Pakistan.
Kelemen, P., Benson, S.M., Pilorgé, H., Psarras, P., and Wilcox, J., 2019. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Frontiers in Climate, 1, 1–20. https://doi.org/10.3389/fclim.2019.00009
Khan, M.H., 1968. The dating and correlation of the Nari and Gaj formation. Geological Bulletin of Punjab University, 7, 57–65.
Khokhar, Q.D., Hakro, A.A.A.D., Solangi, S.H., Siddiqui, I., and Abbasi, S.A., 2016. Textural Evaluation of Nari Formation, Laki Range, Southern Indus Basin, Pakistan. Sindh University Research Journal (Science Series), 48, 633–638.
Mackenzie, F.T., 2005. Diagenesis and Sedimentary rocks. Treatise on Geochemistry. Elsevier: Oxford, UK., 446.
Mahmud, S.A., and Sheikh, S.A., 2009. Reservoir Potential of Lower Nari Sandstones (Early Oligocene) In Southern Indus Basin and Indus Offshore. SPE/PAPG Annual Technical Conference 50582.
Molinaro, M., Leturmy, P., Guezou, J.C., Frizon de Lamotte, D., and Eshraghi, S.A., 2005. The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran: From thin-skinned to thick-skinned tectonics. Tectonics, 24, 1–19. https://doi.org/10.1029/2004TC001633
Moore, C.H., and Wade, W.J., 2013. Meteoric Diagenetic Environment. Developments in Sedimentology. Elsevier, 165–206.
Nader, F.H., Moradpour, M., Samani, P., Hamon, Y., Hosseiny, A., Daniel, J.M., Moallemi, A., and Pickard, N., 2009. Diagenesis of the Asmari Formation (Oligo-Miocene; SW Iran): Implications on Reservoir Modelling of a Giant Oilfield. 1st International Petroleum Conference and Exhibition, 4–9. https://doi.org/10.3997/2214-4609.20145905
Nichols, G., 2009. Sedimentology and Stratigraphy, 2nd ed. Wiley-Blackwell. Paryal, M., Agheem, M.H., Hussain, G., Kalwar, M.A., Hussain, M., and Asghar, H., 2020. Petrography of Upper Nari Formation, Gandri Jabal, Pakistan. North American Academic Research, 3, 178–199.
Powell, C.M., 1979. A Speculative Tectonic History of Pakistan and Surroundings: Some constraints from Indian Ocean. In: Farah, A., De Jong, K.A. (Eds.), Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 5–24.
Qamar, S., Shah, M.M., Janjuhah, H.T., Kontakiotis, G., Shahzad, A., and Besiou, E., 2023. Sedimentological, Diagenetic, and Sequence Stratigraphic Controls on the Shallow to Marginal Marine Carbonates of the Middle Jurassic Samana Suk Formation, North Pakistan. Journal of Marine Science and Engineering, 11, 1230.
Rashid, M., Luo, M., Ashraf, U., Hussain, W., Ali, N., Rahman, N., Hussain, S., Aleksandrovich Martyushev, D., Vo Thanh, H., and Anees, A., 2022. Reservoir quality prediction of gas-bearing carbonate sediments in the Qadirpur field: Insights from advanced machine learning approaches of SOM and cluster analysis. Minerals, 13, 29.
Raza, H.A., Ali, S.M., and Ahmed, R., 1990. Petroleum Geology of Kirthar sub-Basin and Part of Kutch Basin. Pakistan Journal of Hydrocarbon Research, 2, 29–73.
Reed, J.S., Eriksson, K.A., and Kowalewski, M., 2005. Climatic, Depositional and Burial controls on Diagenesis of Appalachian Carboniferous Sandstones: Qualitative and Quantitative methods. Sedimentary Geology, 176, 225–246.
Royden, L.H., and Clark, B.B., 2004. The Tibetan Plateau and Surrounding Regions. In: Pluijm, B.A.V.D., Marshak, S. (Eds.), Earth Structure. W.W. Norton & Company, New York, 525 – 534.
Rudmin, M., Banerjee, S., Sinkina, E., Ruban, A., Kalinina, N., and Smirnov, P., 2022. A study of iron carbonates and clay minerals for understanding the origin of marine ooidal ironstone deposits. Marine and Petroleum Geology, 142, 105777.
Saha, A., and Bhattacharya, B., 2022. Controls on near-surface and burial diagenesis of a syn-rift siliciclastic rock succession: A study from Permian Barren Measures Formation, Southern India. Sedimentary Geology, 436, 106170.
Salem, A.M., Ketzer, J.M., Morad, S., Rizk, R.R., and Al-Aasm, I.S., 2005. Diagenesis and Reservoir-Quality Evolution of Incised-Valley Sandstone: Evidence from the Abu Madi Gas Reservoirs (upper Miocene), the Nile Delta Basin, Egypt. Journal of Sedimentary Research, 75, 572–584. https://doi.org/10.2110/jsr.2005.047
Samtio, M.S., Hakro, A.A.A.D., Lashari, R.A., Mastoi, A.S., Rajper, R.H., and Agheem, M.H., 2021. Depositional Environment of Nari Formation from Lal Bagh Section of Sehwan Area, Sindh Pakistan. Sindh University Research Journal (Science Series), 53, 67–76.
Sarwar, G., and De Jong, K.A., 1979. Arcs, Oroclines, Syntaxes: the Curvatures of Mountain Belts in Pakistan. In: Farah, A., De Jong, K.A. (Eds.), Geodynamics of Pakistan. Geological Survey of Pakistan, Quetta, 341–349.
Schelling, D.D., 1999. Frontal structural geometries and detachment tectonics of the northeastern Karachi arc, southern Kirthar Range, Pakistan. Special Paper of the Geological Society of America, 328, 287–302. https://doi.org/10.1130/0-8137-2328-0.287
Schmidt, V., and McDonald, O.A., 1979. The role of secondary porosity in the course of sandstone diagenesis. In: Scholle, P.A., Schluger, P.R. (Eds.), Aspects of Diagenesis. Society of Economic Paleontologists and Mineralogists, Tulsa, USA, 175–207.
Selley, R.C., 1998. Elements of Petroleum Geology, 2nd ed. Academic Press: London. Shah, S.M.I. (Ed.), 1977. Stratigraphy of Pakistan, Mem. 12. ed. Geological Survey of Pakistan, Quetta.
Shah, S.M.I. (Ed.), 2009. Stratigraphy of Pakistan, Mem. 22. ed. Geological Survey of Pakistan, Quetta.
Shar, A.M., Mahesar, A.A., Abbasi, G.R., Narejo, A.A., and Hakro, A.A.A.D., 2021a. Influence of diagenetic features on petrophysical properties of fine-grained rocks of Oligocene strata in the Lower Indus Basin, Pakistan. Open Geosciences, 13, 517–531. https://doi.org/10.1515/geo-2020-0250.
Shar, A.M., Mahesar, A.A., Abbasi, G.R., Narejo, A.A., and Hakro, A.A.A.D., 2021b. Influence of diagenetic features on petrophysical properties of fine-grained rocks of Oligocene strata in the Lower Indus Basin, Pakistan. Open Geosciences, 13, 517–531. https://doi.org/10.1515/geo-2020-0250.
Smewing, J.D., Warburton, J., Cernuschi, A., and Ul-Haq, N., 2002. Structural Inheritance in the Southern Kirthar Fold Belt. PAPG/SPE Annual Technical Conference, 22-23 November 2002, Islamabad, Pakistan.
Taylor, J.M., 1950. Pore-Space Reduction in Sandstones. Bulletin of American Assocaition of Petroleum Geologist 34, 701–716.
Ullah, S., Jan, I.U., Hanif, M., Latif, K., Mohibullah, M., Sabba, M., Anees, A., Ashraf, U., and Vo Thanh, H., 2022. Paleoenvironmental and bio-sequence stratigraphic analysis of the cretaceous pelagic carbonates of eastern tethys, sulaiman range, Pakistan. Minerals, 12, 946.
Umar, M., Friis, H., Khan, A.S., Kassi, A.M., and Kasi, A.K., 2011. The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan. Journal of Asian Earth Sciences, 40, 622–635. https://doi.org/10.1016/j.jseaes.2010.10.014.
Vredenburg, E.W., 1925. Description of Mollusca from the post-Eocene Tertiary formations of north-western India. Geological Survey of India, 50, 1–506.
Walker, T.R., 1974. Formation of Red Beds in Moist Tropical Climates: A Hypothesis. Bulletin of Geological Society of America, 85, 633–638. https://doi.org/10.1130/0016-7606(1974)85<633:FORBIM>2.0.CO;2
Wang, W., Lin, C., Zhang, X., Dong, C., Ren, L., and Lin, J., 2021. Provenance, clastic composition and their impact on diagenesis: A case study of the Oligocene sandstone in the Xihu sag, East China Sea
Basin. Marine and Petroleum Geology, 126. https://doi.org/10.1016/j.marpetgeo.2020.104890
Worden, R.H., and Burley, S.D., 2003. Sandstone Diagenesis: The Evolution of Sand to Stone. In: Burley, Stuart D., Worden, Richard H. (Eds.), Sandstone Diagenesis: Recent and Ancient. International Association of Sedimentologists, 3–44. https://doi.org/10.1002/9781444304459.ch
Wu, D., Li, H., Jiang, L., Hu, S., Wang, Y., Zhang, Y., and Liu, Y., 2019. Diagenesis and reservoir quality in tight gas bearing sandstones of a tidally influenced fan delta deposit: The Oligocene Zhuhai Formation, western Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 107, 278–300. https://doi.org/10.1016/j.marpetgeo.2019.05.028
Zaid, S.M., and Al Gahtani, F., 2015. Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Journal of Earth Sciences, 24, 72–98. https://doi.org/10.3906/yer-1407-5
Zhang, H., Thanh, H.V., Rahimi, M., Al-Mudhafar, W.J., Tangparitkul, S., Zhang, T., Dai, Z., and Ashraf, U., 2023. Improving predictions of shale wettability using advanced machine learning techniques and nature-inspired methods: Implications for carbon capture utilization and storage. Science of The Total Environment, 877, 162944.
Zhang, K., Fang, X., Xie, Y., Guo, S., Liu, Z., and Wang, L., 2020. Diagenesis and Origination of Carbonate Cements in Deeply Buried Sandstones of the Eocene Es3 Member, Raoyang Sag, Bohai Bay Basin, China. Geofluids, 2020, 1–18.
Zhang, S., Wu, K., Liu, N., Peng, X., and Chen, Y., 2022. Microscopic Characteristics and Formation Mechanism of Effective Reservoirs in the Xihu Depression, China:The Important Role of the Poikilotopic Calcite Cements in Tide-Dominated Delta Systems. Minerals, 12, 1413.
Zhong, S., and Mucci, A., 1989. Calcite and aragonite precipitation from seawater solutions of various salinities: Precipitation rates and overgrowth compositions. Chemical Geology, 78, 283–299.
Zhu, H., Liu, G., Zhong, D., Zhang, T., Lang, J., and Yao, J., 2018. Diagenetic controls on reservoir quality of tight sandstone: A case study of the Upper Triassic Yanchang Formation Chang 7 sandstones, Ordos Basin, China. Earth Sciences Research Journal, 22, 129–138. https://doi.org/10.15446/esrj.v22n2.72251
Zou, C., Zhu, R., Liu, K., Su, L., Bai, B., Zhang, X., Yuan, X., and Wang, J., 2012. Tight Gas Sandstone Reservoirs in China: Characteristics and Recognition Criteria. Journal of Petroleum Science and Engineering, 88, 82-91