A Source Model for Tsunami Hazards. A Case study from the Eastern Segment of the Makran Subduction Zone, Balochistan, Pakistan
Keywords:
Makran subduction zone, tsunami, numerical simulation, deterministic tsunami hazard analysis.Abstract
Population growth and economic development on the Pakistani coasts necessitate tsunami hazard analyses. Numerous valuable research outputs already exist given the 1945 Makran earthquake and tsunami. To fill the gap, and present additional scenarios regarding the characteristics of tsunamis at these coasts, an innovative tsunami source model is developed for simulations. The geographical information system (GIS) techniques are used for the mapping of seismogenic sources, placing the fault planes and approximation of their extent in the source model. The segmentation of the Makran subduction zone is practiced, designating its eastern segment as a tsunami source region. The extent of rupture induced by the 1945 Makran earthquake is related to the size of the tsunami source in the formulation of the new source model. The earthquake catalogs and literature on previously developed source models are consulted to estimate various constituting parameters of this model. The bathymetry profile near coasts is analyzed to assess the susceptibility of submarine landslides that may enhance tsunami impacts. Simulations of the 1945 tsunami yielded ~5 m high wave while simulation of the worst tsunami based on an Mw 8.6 earthquake scenario yielded an amplitude of
~8 m. The late and prolonged arrival of high waves after the first tsunami is also observed in simulations.
References
Ambraseys, N.N., Melville, C.P., 1982. A History of Persian Earthquakes. Cambridge University Press, Cambridge, 219 p.
Berninghausen, W.H., 1966. Tsunamis and Seismic Seiches Reported from Regions Adjacent to the Indian Ocean. Bull. of the Seism. Soc. of Am., 56(1), 69–74.
Bilham, R., Lodi, S., Hough, S., Bukhary, S., Khan, A.M., Rafeeqi, S.F.A., 2007. Seismic hazard in Karachi, Pakistan: uncertain past, uncertain future. Seis. Res. Lett., 78, 601–603.
BODC, 1997. British Oceanographic Data Centre – The Centenary Edition of the GEBCO Digital Atlas (download.gebco.net), Liverpool, UK.
Bonilla, M.G., Mark, R.K., Lienkaemper, J.J., 1984 . Statistical relation among earthquake magnitude, surface rupture and surface fault displacement. Bul. Seism. Soc. Amer., 74(6), 2379-2411.
Burg, J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews 185, 1210-1231.
Byrne, D.E., Sykes, L.R., Davis, D.M., 1992. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran subduction zone. Journal of Geophysical Research, 97. doi: 10.1029/91JB02165. ISSN: 0148-0227.
Farhoudi, G., Karig, D.E., 1977. Makran of Iran and Pakistan as an Active Arc System, Geology, 5, 664–668.
Gutenberg, B., Richter, C.F., 1954. Seismicity of the Earth and Associated Phenomena, Princeton Univ. Press, Princeton, 310 p.
Hanks, T.C., Kanamori, H., 1979. A Moment Magnitude Scale. Journal of Geophysical Research, 84(B5), 2348–2350. doi: 10.1029/JB084iB05p02348.
Harbitz, C. B., Lovholt, F., and Bungum, H., 2014. Submarine landslide tsunamis: how extreme and how likely? Nat. Hazards 72 (3), pp. 1341–1374.
HCP, 2008. Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences and Gempa GmbH. The SeisComP Seismological Software Package. GFZ Data Services.
Heck, N.H., 1947. List of Seismic Sea waves, Bull. Seismol. Soc. Am. 37(4), 269–286.
Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C., Mokhtari, M., Esmaeily, A., 2008. Historical tsunami in the Makran subduction zone off the southern coasts of Iran and Pakistan and results of numerical modeling, Ocean Eng., 35(8 - 9), 774–786.
Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., Yalciner, A.C., 2009. Preliminary Estimation of the Tsunami Hazards Associated with the Makran Subduction Zone at the Northwestern Indian Ocean, Nat. Hazards, 48(2), 229–243.
Heidarzadeh, M., Satake, K., 2015. New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure and Appl. Geophys., doi:10.1007/s00024-014-0948-y.
Hoffmann, G., Rupprechter, N., Albalushi, N., Grutzner, C., Reicherter, K., 2013. The Impact of the 1945 Makran Tsunami along the Coastlines of the Arabian Sea (Northern Indian Ocean) – a review, Z. Geomorphologie 57(4), 257–277.
Jaiswal, R.K., Singh, A.P., Rastogi, B. K., 2009. Simulation of the Arabian Sea Tsunami Propagation Generated due to the 1945 Makran Earthquake and its Effect on Western Parts of Gujarat (India), Nat. Hazards, 48(2), 245–258.
Kakar, D.M., Naeem, G., Usman, A., Hasan, H., Lohdi, H.A., Srinivasalu, S., Andrade, V., Rajendran, C.P., Naderi, A., Beni, Hamzeh, M.A., Hoffmann, G., Al-Balushi, N., Gale, N., Kodijat, A.M., Fritz, H.M., Atwater, B.F., 2014. Elders Recall an Earlier Tsunami on Indian Ocean Shores. Eos, 95(51), 485–486.
Kazmi, A.H., Jan, M.Q.,1997. Geology & Tectonics of Pakistan. Graphic Pub., Karachi.
Khan, A.A., 1999. Offshore Geology of Pakistan and Non-living Resource Prospects. Pakistan Journal of Marine Sciences, 8(1), 81–97.
Kukowski, N., Schillhorn, T., Huhn, K., Rad, U., Husend, S. , Flueh, E. R., 2001. Morphotectonics and Mechanics of the Central Makran Accretionary Wedge off Pakistan. Marine Geology, 173(1-4), 1-19.
Lorito S., Tiberti M.M., Basili R., Piatanesi A., Valensise G., 2008. Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to southern Italy. J Geophys Res Solid Earth.
Lovholt, F., Bungum, H., Harbitz, C. B., Glimsdal, S., Lindholm, C. D., Pedersen, G., 2006. Earthquake related tsunami hazard along the western coast of Thailand, Nat. Hazards Earth Syst. Sci., 6, pp. 979–997.
Mansinha, L., Smylie, D.E., 1971. The Displacement Fields of Inclined Faults. Bulletin of the Seismological Society of America, 61(5), 1433-1440.
Mikami, T., Tomoya, S., Miguel, E., Koichiro, O., Jun, S., Takayuki, S., Hendra, A., Teguh, W., 2014. Tsunami Vulnerability Evaluation in the Mentawai Islands Based on the Field Survey of the 2010 Tsunami. Nat. Hazards, 71, 851–870.
Musson, R., 2009. Subduction in the Western Makran: The Historian's Contribution. J. Geol. Soc., 166, 387–391. doi.org/10.1144/0016-76492008-119.
Neetu, S., Suresh, I., Shankar, R., Nagarajan, B., Sharma, R., Shenoi, S.S.C., Unnikrishnan, A.S., Sundar, D., 2011. Trapped Waves of the 27 November 1945 Makran Tsunami: Observations and Numerical Modeling, Natural Hazards, 59(3), 1609–1618.
Okal, E.A., Fritz, H., Hamzeh, M., Ghase, J., 2015. Field Survey of the 1945 Makran and 2004 Indian Ocean Tsunamis in Baluchistan, Iran. Pure Appl. Geophys. 172, 3343-3356.
Omira, R., M. A. Baptista, F. Leone, L. Matias, S. Mellas, B. Zourarah, J. M. Miranda, F. Carrilho, and Cherel, J. P., 2013. Performance of coastal sea-defense infrastructure at El Jadida (Morocco) against tsunami threat: lessons learned from the Japanese 11 March 2011 tsunami. Nat. Hazards Earth Syst. Sci., 13, 1779–1794.
W.D., Alt, J.N., Cluff, L.S., Plafker, G., 1979. Evidence for the Recurrence of Large- magnitude Earthquakes along the Makran coast of Iran and Pakistan, Tectonophysics, 52(1), 533–547.
Pararas-Carayannis, G., 2006. The potential for tsunami generation along the Makran Subduction Zone in the Northern Arabian Sea. Case study: the earthquake and tsunami of November 28, 1945. Science of Tsunami Hazard, 24(5), 358–384.
Quittmeyer, R.C., Jacob, K.H., 1979. Historical and Modem Seismicity of Pakistan, Afghanistan, Northwestern India, and Southeastern Iran. BSSA, 69(3), 773–823.
Rajendran, C.P., Ramana, M.V., Reddy, N.T., Rajendran, K., 2008. Hazard Implications of the Late Arrival of the 1945 Makran Tsunami. Current Science, 95(12), 1739-1743.
Rajendran, C.P., Rajendran, K., Shah-Hosseini, M., Beni, A.N., Nautiyal, C.M., Andrews, R., 2012. The Hazard Potential of the Western Segment of the Makran Subduction Zone, Northern Arabian Sea. Nat. Hazards, 65, 219–239.
Rastgoftar, E., Soltanpour, M., 2016. Study and Numerical Modeling of 1945 Makran Tsunami due to a Probable Submarine Landslide. Nat. Hazards, 83, 929–945.
Rehman, K., Jadoon, T., Hussain, M., Ahmad, Z., Ali, A., Ahmed, S., 2015. Tsunamigenic Analysis in and around Makran. Journ. of Earth. Engg, 19(2), 332-355.
Rastogi, B.K., Jaiswal, R.K., 2006. A Catalog of Tsunamis in the Indian Ocean, Science of Tsunami Hazards, 25(3), 128-142.
Shah-Hosseini, M., Morhange, C., Beni, N.A., Marriner, N., Lahijani, H., Hamzeh, M., and Sabatier, F., 2011. Coastal Boulders as Evidence for High-Energy Waves on the Iranian coast of Makran, Marine Geology, 290(1), 17–28.
Snead, R.E., 1966. Recent morphological changes along the coast of west Pakistan. Annals of the Association of American Geographers 57 (3), 550–565.
Solangi, S.H., Adeel, N., Shabeer, A., Mian, M., 2019. Morphologic features continental shelf margin: Examples from Pakistan offshore. Geodesy & Geodynamics, 10, 77-91.
Tinti, S., Armigliato, A., 2003. The use of scenarios to evaluate the tsunami impact in southern Italy. Mar. Geol. 199(3), 221–243.
Tinti, S., Armigliato, A., Pagnoni, G., Zaniboni, F., 2005. Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET J Earthquake Technol., 42(4), 171–188.
Truong, H.V.P., 2012. Wave-Propagation Velocity, Tsunami Speed, Amplitudes, Dynamic Water-Attenuation Factors, 15th WCEE, Lisbon, Portugal.
Zuhair, M., Alam, S., 2017. Tsunami Impacts on Nuclear Power Plants along Western Coast of India Due to a Great Makran Earthquake: A Numerical Simulation Approach. International Journal of Geosciences, 8, 1417-1426. doi.org/10.4236/ijg.2017.812083.