Evaluation of Groundwater Quality from Shah Faisal Town, Karachi employing SPSS and GIS-IDW Techniques

Authors

  • Erum Bashir Department of Geology, University of Karachi, Karachi-75270, Pakistan
  • Maria Abdul Wasay Department of Geology, University of Karachi, Karachi-75270, Pakistan
  • Shahid Naseem Department of Geology, University of Karachi, Karachi-75270, Pakistan
  • Maria Kaleem Department of Geology, University of Karachi, Karachi-75270, Pakistan
  • Bushra Shahab Department of Geology, University of Karachi, Karachi-75270, Pakistan

Keywords:

Water Quality Index, Irrigation quality, Shah Faisal Town, GIS-Spatial distribution, SPSS.

Abstract

To assess the quality of groundwater, selected samples from Shah Faisal Town, Karachi have been
evaluated employing spatial and multivariate analyses using ArcGIS-Inverse Distance Weighted (IDW)
method and SPSS-factor and cluster techniques. All samples exhibited alkaline pH; samples adjacent to local
drain revealed very high TDS due to contamination of groundwater. Majority of the samples exhibited Na+
>Ca2+ >Mg2+ >K+, Cl- >SO 2- >HCO + CO 2-, however on the Piper diagram; bulk of the samples demonstrated 4 3- 3
NaCl-type hydrogeochemical facies. Samples plotted on Gibbs' diagram displayed the impact of intrusion
and evaporation in the area. The spatial analysis of pH, SAR and PI revealed that entire study area is good for
irrigation water, though less suitable for drinking purpose. The distribution of WQI, K+, SSP, Na% and KI
values showed that samples collected from the region away from Chakoar Drain is more suitable for
industrial and irrigation applications. Very strong to strong positive correlation matrices are found between
EC, TDS, Na+, Cl-, and TH, SO 2-, Mg2+; Na+ and Cl-; Mg2+ and SO 2-; SSP with Na%; Cl- with Na% and SSP; 4 4
SO 2- with K+; Mg2+ with MAR; Na+ with Na%, KI and SSP. However, RSC showed a very strong to strong 4
negative correlation with EC, TDS, TH, SO 2-, and Mg2+. Strong positive correlation was noted between all 4
irrigation parameters except RSC and MAR. Overall it is reflected from the present study that groundwater
quality was not good alongside the drains of Shah Faisal Town while away from drains the quality become
better.

References

Adhikary, P.P.; Dash, C.J., 2017. Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Science, 7, 339-348.

Aduojo, A.A.; Mosobalaje, O.O.; Uchegbulam, O.; Johnson, A.O.; Ifeanyi, O., 2024. Multivariate analysis of seasonal changes of chemical elements in groundwater around Solous lll dumpsite, Lagos, South- West Nigeria. Scientific African, 23, e02084.

Agheem, M.H.; Markhand, A.H.; Dars, H.; Solangi, S.; Sahito, A.; Thebo, G., 2020. Mineralogical Studies of Manchar Formation (Pliocene), Laki Range, Pakistan: source and Possible Occurrence of Bauxite. Sindh University Research Journal-Science Series, 52, 21-30. 10.26692/SURJ/2020.03.04.

Ahmad, I.; Hasan, H.; Jilani, M.M.; Ahmed, S.I., 2023. Mapping potential groundwater accumulation zones for Karachi city using GIS and AHP techniques. Environmental Monitoring and Assessment, 195(3), 381.

Ahmed, W.; Subhani, A.M.; Abidi, S.S.H., 1983. Geological map of Karachi: Geological Survey of Pakistan, Quetta.

Alam, A.; Singh, A., 2023. Groundwater quality assessment using SPSS based on multivariate statistics and water quality index of Gaya, Bihar(India). Environmental Monitoring and Assessment, 195(6), 687.

Alamgir, A.; Khan, M.A.; Shaukat, S.S.; Majeed, R.; Urooj, S., 2019. Communal health perception of tap water quality supplied to Shah Faisal Town, Karachi. International Journal of Biology and Biotechnology, 16(1), 189-198.

Ali, S.F.; Khan, A., 2021. Physicochemical and Microbiological Characterization of Groundwater along the Banks of Malir River in Karachi, Pakistan. International Journal of Earth Sciences Knowledge and Applications, 3(1), 37-52.

Alrowais, R.; Abdel daiem, M.M.; Li, R.; Maklad, M.A.; Helmi, A.M.; Nasef, B.M.; Said, N., 2023. Groundwater quality assessment for drinking and irrigation purposes at Al-Jouf Area in KSA using artificial neural network, GIS, and multivariate statistical techniques. Water, 15(16), 2982.

Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Chau, K.W., 2019. Groundwater quality assessment for sustainable drinking and irrigation. Sustainability, 12(1), 177.

Badr, E.S.A.; Tawfik, R.T.; Alomran, M.S., 2023. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water, 15(13), 2488.

Barua, S.; Mukhopadhyay, B.P.; Bera, A., 2021. Hydrochemical assessment of groundwater for irrigation suitability in the alluvial aquifers of Dakshin Dinajpur district, West Bengal, India. Environmental Earth Sciences, 80(16), 1-14.

Bashir, E.; Huda, S.N.U.; Naseem, S.; Hamza, S.; Kaleem, M., 2017. Geochemistry and quality parameters of dug and tube well water of Khipro, District Sanghar, Sindh, Pakistan. Applied Water Science, 7(4), 1645-1655.

Berhe, B.A., 2020. Evaluation of groundwater and surface water quality suitability for drinking and agricultural purposes in Kombolcha town area, eastern Amhara region, Ethiopia. Applied Water Science, 10(6), 1-17.

Bouaroudj, S.; Menad, A.; Bounamous, A.; Ali- Khodja, H.; Gherib, A.; Weigel, D.E.; Chenchouni, H., 2019. Assessment of water quality at the largest dam in Algeria (Beni Haroun Dam) and effects of irrigation on soil characteristics of agricultural lands. Chemosphere, 219, 76-88.

Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G., 1970. A water quality index-do we dare. Water and Sewage Works, 117(10), 339-343.

Bureau of Indian Standards (BIS) (2012). Indian Standard specification for drinking water IS: 10500, 2-4.

Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D., 2023. A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives. Reviews in Environmental Science and Bio Technology, 22, 1-47. 10.1007/s11157-023-09650-7.

Din, I. U.; Muhammad, S.; ur Rehman, I, 2023. Groundwater quality assessment for drinking and irrigation purposes in the Hangu District, Pakistan. Journal of Food Composition and Analysis, 115, 104919.

Doneen, L.D., 1964. Water Quality for Agriculture. Department of Irrigation, University of California, Davis, 48 p.

El Baba, M.; Kayastha, P.; Huysmans, M.; De Smedt, F., 2020. Evaluation of the groundwater quality using the water quality index and geostatistical analysis in the Dier al-Balah Governorate, Gaza Strip, Palestine. Water, 12(1), 262. https://doi.org/10.3390/w12010262.

El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H., 2023. An Integrated Principal Component and Hierarchical Cluster Analysis Approach form Groundwater Quality Assessment in Jazan, Saudi Arabia. Water, 15, 1466.

Fatima, S.U.; Khan, M.A.; Siddiqui, F.; Mahmood, N.; Salman, N.; Alamgir, A.; Shaukat, S. S., 2022 . Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environmental Monitoring and Assessment, 194(151). https://doi.org/10.1007/s10661-022- 09845-5.

Gaagai, A.; Aouissi, H.A.; Bencedira, S.; Hinge, G.; Athamena, A.; Heddam, S.; Ibrahim, H., 2023. Application of water quality indices, machine learning approaches, and GIS to identify groundwater quality for irrigation purposes: a case study of Sahara Aquifer, Doucen Plain, Algeria. Water, 15(2), 289.

Gang, S.; Jia, T.; Deng, Y.; Xing, L.; Gao, S., 2023. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Qingdao City, Shandong Province, China. Water, 15, 1348.

Ganvir, P.S., 2023. Hydro-Geochemical Plots: An Efficient Tool for the Elucidation of Groundwater Chemistry. International Journal of Innovative Science and Research Technology, 8(2), 95-100. https://doi.org/10.5281/zenodo.7645241.

Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090.

Gibson, N.; McNulty, S.; Miller, C.; Gavazzi, M.; Worley, E.; Keesee, D.; Hollinger, D., 2021. Identification, Mitigation, and Adaptation to Salinization on Working Lands in the U.S. Southeast. General Technical Report SRS2-59, USDA.

Gueddari, H.; Akodad, M.; Baghour, M.; Moumen, A.; Skalli, A.; El Yousfi, Y.; Ismail, A.; Chahban, M.; Azizi, G.; Ait Hmeid, H.; Zahid, M., 2022. The salinity origin and hydrogeochemical evolution of groundwater in the Oued Kert basin, North-eastern of Morocco. Scientific African, 16, e01226. 10.1016/j.sciaf.2022.e01226.

Guriro, A., 2017. Exploring why Karachi's rainwater has now here to go. https://www.dawn.com/news/1355990; published September 7, 2017.

Haldar, K.; Kujawa-Roeleveld, K.; Dey, P.; Bosu, S.; Datta, D.K.; Rijnaarts, H.H., 2020. Spatio-temporal variations in chemical- physical water quality parameters influencing water reuse for irrigated agriculture in tropical urbanized deltas. Science of the Total Environment, 708, 134559.

Hossain, M.S.; Nahar, N.; Shaibur, M.R.; Bhuiyan, M.T.; Siddique, A.B.; Al Maruf, A.; Khan, A.S., 2024. Hydro-chemical characteristics and groundwater quality evaluation in south-western region of Bangladesh: A GIS-based approach and multivariate analyses. Heliyon, 10 (2024), e24011.

HSC, 1960. Reconnaissance Geology of part of West Pakistan (Colombo Plan co- operative project conducted and compiled by Hunting Survey Corporation). Government of Canada, Toronto.

Iddrisu, U.F.; Armah, E.K.; Amedorme, B.S.; Mbatchou, V.C., 2024. Assessing the groundwater quality in Ghana's Nanton District: comprehensive evaluation and implications for ustainable management. AQUA-Water Infrastructure, Ecosystems and Society, 73(1), 34-56. https://doi.org/10.2166/aqua.2024.196.

Kelly, D.J., 2006. Development of Seawater Intrusion Protection Regulations. Section, 6, 24-29.

Kemper, K.E., 2004. Groundwater from development to management. Hydrogeology Journal, 12(1), 3-5.

Khan, A.; Qureshi, F.R., 2018. Groundwater quality assessment through water quality index (WQI) in New Karachi Town, Karachi, Pakistan. Asian Journal of Water, Environment and Pollution, 15(1), 41-46.

Khan, A.; Rehman, Y., 2017. Groundwater quality assessment using water quality index (WQI) in Liaquatabad Town, Karachi, Pakistan. Academic Journal of Environmental Science, 5(6), 095-101.

Khan, Y.K.; Toqeer, M.; Shah, M.H., 2023. Characterization, source apportionment and health risk assessment of trace metals in groundwater of metropolitan Area in Lahore, Pakistan. Exposure and Health, 15, 915-931.

Kim, J.H.; Kim, R.H.; Lee, J.; Cheong, T.J.; Yum, B. W.; Chang, H. W., 2005. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. Hydrological Processes: An International Journal, 19(6), 1261-1276.

Kom, K.P.; Gurugnanam, B.; Sunitha, V.; Reddy, Y. S.; Kadam, A. K., 2022 . Hydrogeochemical assessment of groundwater quality for drinking and irrigation purposes in western Coimbatore, South India. International Journal of Energy and Water Resources, 6(4), 475-494.

Kouacou, B.A.; Anornu, G.; Gibrilla, A.; Adiaffi, B.; Gyamfi, C., 2024. Hydrochemical evolution of groundwater in Soubr´e and Gagnoa counties, Côte d'Ivoire. Groundwater for Sustainable Development, 24, 101079. 10.1016/j.gsd.2024.101079.

Madhav, S.; Ahamad, A.; Kumar, A.; Kushawaha, J.; Singh, P.; Mishra, P.K., 2018. Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2), 127-136.

Malkani, M.S.; Zafar, M., 2016. Revised stratigraphy of Pakistan, 127th edition. Geological Survey of Pakistan, Quetta, 127, 87 pages.

Marandi, A.; Shand, P., 2018. Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry, 97, 209-212. https://doi.org/10.1016/j.apgeochem.201 8.07.009

Mokhtar, A.; Elbeltagi, A.; Gyasi-Agyei, Y.; Al- Ansari, N.; Abdel-Fattah, M.K., 2022. Prediction of irrigation water quality indices based on machine learning and regression models. Applied Water Science, 12(76). https://doi.org/10.1007/s13201-022- 01590-x.

Nabi, A.; Liu, X.; Gong, Z.; Pervaiz, K.; Ali, A.; Khalil, U., 2019. Seismotectonic analyses of Karachi Arc, Southern Kirthar Fold Belt, Pakistan. International Journal of Economic and Environmental Geology, 10(2), 09-18.

Nag, S.K.; Das, S., 2014. Quality assessment of groundwater with special emphasis on irrigation and domestic suitability in Suri I & II blocks, Birbhum District, West Bengal, India. American Journal of Water Resources, 2(4), 81-98.

Naseem, S.; Hamza, S.; Bashir, E., 2010. Groundwater geochemistry of Winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. European Water, 31, 21-32.

Nawaz, R.; Nasim, I.; Irfan, A.; Islam, A.; Naeem, A.; Ghani, N.; Irshad, M.A.; Latif, M.; Nisa, B.U.; Ullah, R., 2023. Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Toxics, 11(7), 577. https://doi.org/10.3390/toxics11070577

Nistor, M.M.; Rahardjo, H.; Satyanaga, A.; Hao, K.Z.; Xiaosheng, Q.; Sham, A.W.L., 2020. Investigation of groundwater table distribution using borehole piezometer data interpolation: Case study of Singapore. Engineering Geology, 271, 105590.

NSDWQ (National Standards for Drinking Water Quality), 2008. Ministry of Environment, Government of Pakistan.

Nugrah, N.; Syam, M.A.; Heriyanto, 2023. Geology and Groundwater Quality Analysis for Clean Water and Irrigation of Sanga-sanga District, Kutai Kartanegara Regency, East Kalimantan Province. IOP Conference Series: Earth and Environmental Science, 1157 (2023), 012056.

Okolo, C.M.; Onuora, I.D.; Madu, F.M.; Obasi, P.N., 2024. Characterization of Dominant Hydrogeochemical Processes in Ground water in Onitsha Area, Southeastern Nigeria. International Journal of Environment and Climate Change, 14(1), 43-53.

Onwuka, O.S.; Ezugwu, C.K.; Ifediegwu, S.I., 2019. Assessment of the impact of onsite sanitary sewage system and agricultural wastes on groundwater quality in Ikem and its environs, south-eastern Nigeria. Geology, Ecology, and Landscapes, 3(1), 65-81.

Popek, E., 2018. Chapter 2 Environmental chemical pollutants. In: Sampling and Analysis of Environmental Chemical Pollutants. Elsevier publisher, pp. 13-69. https://doi.org/10.1016/C2014-0-03819- 1.

Qureshi, I.H.; Shah, S.A.A.; Tariq, M.A.; Khan M.S.; Ahsan, S.N.; Akhtar, M.J.; Pasha, M.A.; Khan, I.A.; Khanzada, M.I., 2001. Geological map of Karachi area, Sindh, Pakistan. Geological Survey of Pakistan.

Rahman, A.U., 1996. Groundwater as source of contamination for water supply in rapidly growing megacities of Asia: Case of Karachi, Pakistan. Water Science and Technology, 34(7-8), 285-292.

Ram, A.; Tiwari, S.K.; Pandey, H.K.; Chaurasia, A.K.; Singh, S.; Singh, Y.V., 2021. Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11(46), 1-12.

Sahib, L.Y.; Marandi, A.; Schüth, C., 2016. Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq. Science of The Total Environment, 562, 935–945. https://doi.org/10.1016/j.scitotenv.2016.0 3.185.

Shaikh, H.; Gaikwad, H.; Kadam, A.; Umrikar, B., 2020. Hydrogeochemical characterization of groundwater from semiarid region of western India for drinking and agricultural purposes with special reference to water quality index and potential health risks assessment. Applied Water Science, 10(204), 1-16. https://doi.org/10.1007/s13201-020- 01287-z.

Shamsudduha, M., 2013. Groundwater resilience to human development and climate change in South Asia. In: Global Water Forum (GWF) Discussion Paper, 1332.

Shyamala, G.; Jeyanthi, J.; Gobinath, R.; Akinwumi, I.I.; Maheswari, M., 2017. Assessment of groundwater quality using spatial variation technique. Journal of Chemical and Pharmaceutical Sciences, 10(4), 9-15.

Shyamala, G.; Rajesh Kumar, K.; Gobinath, R.; Saravanakumar, N., 2021. Suitability Evaluation of Groundwater Quality for the Intent of Irrigation. Nature Environment and Pollution Technology, 20(2), 793-799.

Singh, G.; Rishi, M.S.; Arora, N.K., 2019. Integrated GIS-based modelling approach for irrigation water quality suitability zonation in parts of Satluj River Basin, Bist Doab region, North India. SN Applied Sciences, 1(1438), 1-16. https://doi.org/10.1007/s42452-019- 1405-4

Siriwardhana, K.D.; Jayaneththi, D.I.; Herath, R.D.; Makumbura, R.K.; Jayasinghe, H.; Gunathilake, M.B.; Azamathulla, H.M.; Tota-Maharaj, K.; Rathnayake, U., 2023. A Simplified Equation for Calculating the Water Quality Index (WQI), Kalu River, Sri Lanka. Sustainability, 15(15), 12012. https://doi.org/10.3390/su151512012.

Tariq, S.; Khan, M.A.; Alamgir, A., 2016. Physico-chemical profile of Malir river and Chinna Creek. Procedia Environmental Sciences, 34, 514-524. https://doi.org/10.1016/j.proenv.2016.04. 045.

Venâncio, C.; Caon, K.; Lopes, I., 2023. Cation Composition Influences the Toxicity of Salinity to Freshwater Biota. Internatinal Journal of Environmental Reseasrch and Public Health, 20(3), 1741. https://doi.org/10.3390/ijerph20031741.

Wang, Y.; Li, R.; Wu, X.; Yan, Y.; Wei, C.; Luo, M.; Zhang, Y., 2023. Evaluation of Groundwater Quality for Drinking and Irrigation Purposes Using GIS-Based IWQI, EWQI and HHR Model. Water, 15(12), 2233.

Wekesa, A.M.; Otieno, C., 2022. Assessment of groundwater quality using water quality index from selected springs in Manga Subcounty, Nyamira County, Kenya. The Scientific World Journal, 3498394, 7. https://doi.org/10.1155/2022/3498394.

WHO, 2017. Guidelines for Drinking-Water Quality. World Health Organization

Zhang, T.; Wang, P.; He, J.; Liu, D.; Wang, M.; Wang, M.; Xia, S., 2023. Hydrochemical Characteristics, Water Quality, and Evolution of Groundwater in Northeast China. Water, 15(14), 2669. https://doi.org/10.3390/w15142669.

Downloads

Published

2024-11-26

How to Cite

Bashir, E. ., Wasay, M. A. ., Naseem, S. ., Kaleem, M., & Shahab, B. . (2024). Evaluation of Groundwater Quality from Shah Faisal Town, Karachi employing SPSS and GIS-IDW Techniques. Journal of Himalayan Earth Sciences, 57(2), 32-53. Retrieved from http://ojs.uop.edu.pk/jhes/article/view/1364