Extracting clear ice surface of mountainous glaciers of Karakoram Range using Machine Learning for different Band Ratio compositions of OLI: Case Study of Hunza Sub-Basin

Authors

  • Syed Najam ul Hassan Departmenty of Computer Sciences, Karakoram International University, Gilgit, 15100, Pakistan
  • Mohd Nadzri Md. Reba Geoscience & Digital Earth Centre (INSTeG), Research Institute for Sustainability & Environment (RISE), Universiti Teknologi Malaysia (UTM), Johar Bahru, 83110 Malaysia
  • Aftab Ahmed Departmenty of Computer Sciences, Karakoram International University, Gilgit, 15100, Pakistan

Keywords:

Machine Learning; Random Forest; Mountain Glacier; Himalaya; Operational Land Imager: Climate Change: Hunza Sub-Basin

Abstract

Glaciers in the Hindu Kush-Karakoram-Himalaya region impact Earth's climate, contribute freshwater downstream, and influence weather patterns of precipitation and temperature. However, the region needs more detailed information about its glaciers. Specifically, the stability of glaciers in the Karakoram range of the Hunza sub-basin is a well-known anomaly. Therefore, monitoring its glaciers is needed to understand the dynamics of climate change in HKH. Glacier inventory is baseline data for monitoring, and the clear-ice surface is a quantifying parameter of glacier changes. Recently, Operational Land Imager (OLI), exploited with machine learning (ML), is highly recommended for glacier monitoring due to improved accuracy. So, it is necessary to update the current status of glaciers in sub-basin using OLI and ML. Therefore, the study aims a) to evaluate the current extent of clear ice in the sub-basin to examine stability and b) to exploit the application of ML for extracting clear ice from OLI and assess accuracy. Google Earth environment is used to derive the data of Optical Land Imager and further analyze it with a machine learning approach to classify the extent of clear ice. Random Forest classifier with minimum Root means square error (0.1 to 0.4) used through SNAP environment. Results indicate satisfactory spatial distribution of clear ice in higher elevations (> 5000 meters). 10 % area difference percentage exhibited in overall extent; however, 28 glaciers (area > 5 km2) showed variation in the extent and confirmed the localized heterogeneity. Overall accuracy (82% to 83 %) and kappa coefficient values (0.64 to 0.65) confirm the role of individual bands of OLI. It is concluded that the glaciers in the sub-basin have an overall stable clear-ice extent except for variations in terminal ends. Meanwhile, machine learning has a significant role in the automatic extraction of clear ice when exploited with the OLI.

References

Aczel, A. D., & Sounderpandian, J. (2017). Introduction and Descriptive Statistics. In Complete business statistics. Boston, MA: Irwin/McGraw Hill.

Ali, J., Khan, R., Ahmad, N., & Maqsood, I. (2012). Random forests and decision trees. International Journal of Computer Science Issues (IJCSI), 9(5), 272.

Alifu, H., Tateishi, R., & Johnson, B. (2015). A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing. https://doi.org/10.1080/2150704X.2015.1034886

Arendt, A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A., Hagen, J.-O., Hock, R., Huss, M., Kaser, G., & Kienholz, C. (2017). Randolph Glacier inventory–A dataset of Global glacier outlines: Version 6.0: Technical report, Global land ice measurements from space.

Baig, S. U., Khan, H., & Din, A. (2018). Spatio-temporal analysis of glacial ice area distribution of Hunza River Basin, Karakoram region of Pakistan. Hydrological Processes, 32(10), 1491–1501. https://doi.org/10.1002/hyp.11508=

Baig, S. U., Tahir, A. A., Din, A., & Khan, H. (2018). Hypsometric properties of mountain landscape of Hunza River Basin of the Karakoram Himalaya. Journal of Mountain Science, 15, 1881-1891. https://doi.org/https://doi.org/10.1007/s11629-018-4849-x

Bajracharya, S. R., & Shrestha, B. R. (2011). The status of glaciers in the Hindu Kush-Himalayan region. International Centre for Integrated Mountain Development (ICIMOD).

Bolch, T., Kulkarni, A., Kaab, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The State and Fate of Himalayan Glaciers. Science. https://doi.org/10.1126/science.1215828

Bolch, T., Pieczonka, T., Mukherjee, K., & Shea, J. (2017). Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11(1). https://doi.org/10.5194/tc-11-531-2017

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/J.RSE.2009.01.007

Chastain, R., Housman, I., Goldstein, J., & Finco, M. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sensing of Environment, 221, 274–285. https://doi.org/10.1016/J.RSE.2018.11.012

Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(4), 321–328.

Cook, E. R., Palmer, J. G., Ahmed, M., Woodhouse, C. A., Fenwick, P., Zafar, M. U., Wahab, M., & Khan, N. (2013). Five centuries of Upper Indus River flow from tree rings. Journal of Hydrology, 486, 365–375. https://doi.org/10.1016/J.JHYDROL.2013.02.004

Dorothy K Hall, & George A Riggs. (2011). Normalized-Difference Snow Index (NDSI). In Encyclopedia of Snow, Ice and Glaciers. https://doi.org/10.1007/978-90-481-2642-2

Dyhrenfurth, G. O. (1955). To the Third Pole: The History of the High Himalaya. W. Laurie. https://books.google.ie/books?id=NcO1AAAAIAAJ

Elkhrachy, I. (2018). Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia. Ain Shams Engineering Journal, 9(4), 1807–1817. https://doi.org/10.1016/J.ASEJ.2017.01.007

Franklin, S. E., He, Y., Pape, A., Guo, X., & McDermid, G. J. (2011). Landsat-comparable land cover maps using ASTER and SPOT images: a case study for large-area mapping programmes. International Journal of Remote Sensing, 32(8), 2185–2205. https://doi.org/10.1080/01431161003674642

Gardelle, J., Berthier, E., & Arnaud, Y. (2012). Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geoscience, 5(5), 322–325. https://doi.org/10.1038/ngeo1450

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/J.RSE.2017.06.031

Guan, H., Yu, J., Li, J., & Luo, L. (2012). Random forests-based feature selection for land-use classification using lidar data and ortho-imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B7, 203-208, doi: 10.5194/isprsarchives-XXXIX-B7-203-2012

Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W., Yu, P., Liu, Q., & Jiang, Z. (2015). The second Chinese glacier inventory: Data, methods and results. Journal of Glaciology, 61(226), 357-372. https://doi.org/10.3189/2015JoG14J209.

Haeberli, W., Hoelzle, M., Paul, F., & Zemp, M. (2007). Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Annals of Glaciology, 46, 150–160. https://doi.org/DOI: 10.3189/172756407782871512

Haireti, A., Ryutaro, T., & Brian, J. (2015). A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model. International Journal of Remote Sensing, 36(8), 2063–2075. https://doi.org/10.1080/2150704X.2015.1034886

Hewitt, K. (2005). The Karakoram Anomaly? Glacier Expansion and the “Elevation Effect”, Karakoram Himalaya. Mountain Research and Development, 25(4), 332-340. https://doi.org/10.1659/0276-4741(2005)025[0332:TKAGEA]2.0.CO;2,

Hussain, D., & Khan, A. A. (2020). Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Science Informatics, 1–11. https://doi.org/10.1007/s12145-020-00450-z

ICIMOD. (2010). Glacier mapping and monitoring tools and Techniques. HimalDoc. https://lib.icimod.org/record/26904

Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., & Bierkens, M. F. P. (2015). Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 19(11), 4673–4687. https://doi.org/10.5194/HESS-19-4673-2015

IPCC. (2013). Climate Change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Ismail, M. H., & Jusoff, K. (2008). Satellite data classification accuracy assessment based from reference dataset. International Journal of Geological and Environmental Engineering, 2(3), 23–29.

Kaab, A., Bolch, T., Casey, K., Heid, T., Kargel, J. S., Leonard, G. J., Paul, F., & Raup, B. H. (2014). Glacier mapping and monitoring using multispectral data. In Global Land Ice Measurements From Space (pp. 75–112). Springer.

Ke, L., Ding, X., & Song, C. (2015). Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. Remote Sensing of Environment, 168, 13-23 https://doi.org/10.1016/j.rse.2015.06.019

Khan, A. A., Jamil, A., Hussain, D., Taj, M., Jabeen, G., & Malik, M. K. (2020). Machine-Learning Algorithms for Mapping Debris-Covered Glaciers: The Hunza Basin Case Study. IEEE Access, 8, 12725–12734. https://doi.org/10.1109/ACCESS.2020.2965768

Khan, A., Naz, B. S., & Bowling, L. C. (2015). Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002. Journal of Hydrology, 521, 46-64 https://doi.org/10.1016/j.jhydrol.2014.11.048

Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., & Immerzeel, W. W. (2017). Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature, 549(7671), 257–260. https://doi.org/10.1038/nature23878

Krimmel, R, M., & Meier, M, F. (1975). Glacier Applications of Erts Images. Journal of Glaciology, 15(73), 391–402. https://doi.org/10.3189/S002214300003450X

Krishna, G., Sahoo, R. N., Pradhan, S., Ahmad, T., & Sahoo, P. M. (2018). Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification. Earth Science Informatics, 11(2), 159–170. https://doi.org/10.1007/s12145-017-0324-4

Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10. https://doi.org/10.1016/j.gsf.2015.07.003

Li, J., Sun, M., Yao, X., Duan, H., Zhang, C., Wang, S., Niu, S., & Yan, X. (2023). A Review of Karakoram Glacier Anomalies in High Mountains Asia. Water, 15(18), 3215. https://doi.org/10.3390/w15183215

Linghong, K., Ding, Xi., Zjang, L., Hu, J., Shum, C. K., & Lu, Z. (2016). Compiling a new glacier inventory for southeastern Qinghai–Tibet Plateau from Landsat and PALSAR data. Journal of Glaciology, 62(233), 579–592. https://doi.org/10.1017/jog.2016.58

Lu, Y., Zhang, Z., & Huang, D. (2020). Glacier mapping based on random forest algorithm: A case study over the eastern Pamir. Water (Switzerland), 12(11), 1–25. https://doi.org/10.3390/w12113231

Markham, B. L., Dabney, P. W., Murphy-Morris, J. E., Pedelty, J. A., Knight, E. J., Kvaran, G., & Barsi, J. A. (2010). The landsat data continuity mission operational land imager (OLI) radiometric calibration. 2010 IEEE International Geoscience and Remote Sensing Symposium, 2283–2286. https://doi.org/10.1109/IGARSS.2010.5652789

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343

Minora, U., Bocchiola, D., D’Agata, C., Maragno, D., Mayer, C., Lambrecht, A., Vuillermoz, E., Senese, A., Compostella, C., Smiraglia, C., & Diolaiuti, G. A. (2016). Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010: The “Karakoram Anomaly” in the spotlight. Progress in Physical Geography. Earth and Environment, 40(5), 629-660. https://doi.org/10.1177/0309133316643926

Missions, S., & Catalogue, S. M. (2022). Landsat 9. Retrieved April.

Mölg, N., Bolch, T., Rastner, P., Strozzi, T., & Paul, F. (2018a). A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: Distribution of debris cover and mapping challenges. Earth System Science Data, 10(4), 1807–1827. https://doi.org/10.5194/essd-10-1807-2018

Mölg, N., Bolch, T., Rastner, P., Strozzi, T., & Paul, F. (2018b). Glacier inventory of Pamir and Karakoram, link to GIS files. PANGAEA. https://doi.org/10.5194/essd-2018-35

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., & Ip, A. (2016). Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341–352. https://doi.org/10.1016/J.RSE.2015.11.003

Onojeghuo, A. O., Blackburn, G. A., Wang, Q., Atkinson, P. M., Kindred, D., & Miao, Y. (2018). Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International Journal of Remote Sensing, 39(4), 1042–1067. https://doi.org/10.1080/01431161.2017.1395969

Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., & Winsvold, S. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63). https://doi.org/10.3189/2013AoG63A296

Paul, F., Barry, R. G., Cogley, J. G., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C. S. L., Raup, B., Rivera, A., & Zemp, M. (2009). Recommendations for the compilation of glacier inventory data from digital sources. Annals of Glaciology, 50(53), 119-126. doi:10.3189/172756410790595778

Paul, F., Bolch, T., Kääb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T., Ticconi, F., Bhambri, R., Berthier, E., Bevan, S., Gourmelen, N., Heid, T., Jeong, S., Kunz, M., Lauknes, T. R., Luckman, A., Merryman Boncori, J. P. & Van Niel, T. (2015). The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 62, 408-426. https://doi.org/10.1016/j.rse.2013.07.043

Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., & Schwaizer, G. (2016). Glacier remote sensing using Sentinel-2. part II: Mapping glacier extents and surface facies, and comparison to Landsat 8. Remote Sensing, 8(7), 575. https://doi.org/10.3390/rs8070575

Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., M??lg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J., & Sharp, M. J. (2014). The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology, 60(221), 537–552. https://doi.org/10.3189/2014JoG13J176

Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241–262.

Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., & Armstrong, R. (2009). Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 global land ice measurements from space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50, 53-69. https://doi.org/10.3189/172756410790595804

Rastner, P., Strozzi, T., & Paul, F. (2017). Fusion of multi-source satellite data and DEMs to create a new glacier inventory for Novaya Zemlya. Remote Sensing, 9(11), 1122. https://doi.org/10.3390/rs9111122

Robson, B. A., Nuth, C., Dahl, S. O., Hölbling, D., Strozzi, T., & Nielsen, P. R. (2015). Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sensing of Environment, 170, 372-387. https://doi.org/10.1016/j.rse.2015.10.001

Sakai, A. (2019). Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia. The Cryosphere, 13(7), 2043–2049. https://doi.org/10.5194/tc-13-2043-2019

Shabeh ul, H. (2016). Future Water Availability from Hindukush-Karakoram-Himalaya upper Indus Basin under Conflicting Climate Change Scenarios. Climate, 4(3), 40. https://doi.org/10.3390/cli4030040

Shao, G., & Wu, J. (2008). On the accuracy of landscape pattern analysis using remote sensing data. Landscape Ecology, 23(5), 505–511. https://doi.org/10.1007/s10980-008-9215-x

Syed, N. ul H., Md Reba, M. N., Hussain, D., & Ahmed, A. (2018). Spectral quality assessment of Landsat 8 and Sentinel 2 bands for glacier identification in Upper Indus Basin. 39th Asian Conference on Remote Sensing (ACRS).

Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations-A review. In Remote Sensing, 12(7), 1135. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs12071135

Thanh Noi, P., & Kappas, M. (2017). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors (Basel, Switzerland), 18(1), 18. https://doi.org/10.3390/s18010018

Tobias, B., Ulrich, K., & Jeffrey, O. (2005). Using ASTER and SRTM DEMs for studying geomorphology and glaciation in high mountain areas - Zurich Open Repository and Archive. In Marinko, O. (Ed.), New Strategies for European Remote Sensing. Millpress.

Veh, G., Korup, O., Walz, A., & Roessner, S. (2018). Detecting Himalayan glacial lake outburst floods from Landsat time series. Remote Sensing of Environment, 207, 84-97. https://doi.org/10.1016/j.rse.2017.12.025

Wang, H., Yang, R., LI, X., & CAO, S. (2017). Glacier parameter extraction using Landsat 8 images in the eastern Karakorum. IOP Conference Series: Earth and Environmental Science, 57(1), 012004. https://doi.org/10.1088/1755-1315/57/1/012004

Wessels, K., van den Bergh, F., Roy, D., Salmon, B., Steenkamp, K., MacAlister, B., Swanepoel, D., & Jewitt, D. (2016). Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers. Remote Sensing, 8(11), 888. https://doi.org/10.3390/rs8110888

Wiltshire, A. J. (2014). Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. The Cryosphere, 8(3), 941–958. https://doi.org/10.5194/tc-8-941-2014

Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., Hoelzle, M., Paul, F., Haeberli, W., Denzinger, F., Ahlstrøm, A. P., Anderson, B., Bajracharya, S., Baroni, C., Braun, L. N., Cáceres, B. E., Casassa, G., Cobos, G., Dávila, L. R., Delgado Granados, H., Demuth, M. N., & Vincent, C. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61(228), 745–762. https://doi.org/DOI: 10.3189/2015JoG15J017

Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., Skakun, S., & Roger, J.-C. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sensing of Environment, 215, 482–494. https://doi.org/10.1016/J.RSE.2018.04.031

Zhang, J., Jia, L., Menenti, M., & Hu, G. (2019). Glacier Facies Mapping Using a Machine-Learning Algorithm: The Parlung Zangbo Basin Case Study. Remote Sensing, 11(4), 452. https://doi.org/10.3390/rs11040452

Zhang, M., Wang, X., Shi, C., & Yan, D. (2019). Automated glacier extraction index by optimization of Red/SWIR and NIR /SWIR ratio index for glacier mapping using landsat imagery. Water (Switzerland), 11(6), 1223. https://doi.org/10.3390/w11061223

Downloads

Published

2025-03-27

How to Cite

Hassan, S. N. ul, Reba, M. N. M., & Ahmed, A. (2025). Extracting clear ice surface of mountainous glaciers of Karakoram Range using Machine Learning for different Band Ratio compositions of OLI: Case Study of Hunza Sub-Basin . Journal of Himalayan Earth Sciences, 58(1), 1-20. Retrieved from http://ojs.uop.edu.pk/jhes/article/view/1764