Evaluating paleoceanographic and planktonic foraminiferal diversification from the Cretaceous Mughal Kot Formation, Mughal Kot Section, Lower Indus Basin, Pakistan

Authors

  • Suleman Khan Department of Geology, University of Peshawar
  • Bilal Wadood Department of Geology, University of Swabi
  • Sajjad Ahmed Department of Geology, University of Peshawar
  • Abdullah Khan Department of Geology, University of Peshawar
  • Farhan Ahmed Department of Geology, University of Peshawar
  • Hamid Khan Department of Geology, University of Peshawar

Keywords:

Foraminifera, Evolution, Paleoceanography, Anoxic events.

Abstract

The Mughal Kot Formation is well exposed in the Mughal Kot, where a section of 1000m was studied particularly for its planktonic foraminifera. The studied section is dominantly comprised of nodular marls with minor intercalation of graded bedded lenticular sandstone and thick bedded limestone. The biostratigraphic investigations revealed abundant planktonic foraminiferal species of Globotruncana, Globotruncanita and Heterohelix. Based on these species, a single local planktonic foraminiferal biozone i.e. Globotruncana-Globotruncanita- Heterohelix Assemblage is erected. The biozonal information is integrated with previous literature and early to late Maastrichtian age (76 Ma to 69 Ma) is assigned to the Mughal Kot Formation. This study suggests that the overall species richness is low in the Mughal Kot Formation due to the high rate of sedimentation i.e. 142 mm/1000 years. This high rate of sedimentation is further supported by turbidite sequences at different stratigraphic levels within the Mughal Kot Formation. Such high rate of sedimentation causes a dilution effect in the basin, which subsequently resulted in the overall low species richness in Mughal Kot Formation. Furthermore, the overall species richness within the Formation indicates a decreasing trend from base to top of the section. This decreasing trend in the species richness suggest a shift from the cooler climate to warmer climate i.e. the shift in the nutrient structure resulted from more stratified ocean in the early Maastrichtian (76 Ma to 73 Ma) to mixed ocean in the late Maastrichtian (73 Ma to 69 Ma).

References

Abramovich, S., Keller, G., 2002.High stress late Maastrichtian paleoenvironment: Inferences from planktic foraminifera in Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 145-164.

Arthur, M. A., Dean, W. E., Schlanger, S. O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2, in The Carbon. Cycle and Atmospheric CO2: Natural Variations Archean to Present, Geophys. Monogr. Ser., vol. 32, edited by E. T. Sundquist and W.S. Broecker, 504- 529, AGU, Washington, D. C.

Banks, C.J., Warburton. J., 1986. Passive roof duplex geometry in the frontalstructures of the Kirthar and Sulaiman Mountain belts, Pakistan. Journal of Structural Geology, 8, 229-237.

Barrera, E., Huber, B. T., 1990. Evolution of Antarctic waters during the Maastrichtian, foraminifer oxygen and carbon isotope ratios, Leg 113. In: Barker, P. F., Kennett, J. P., et al. (Eds.), Proceedings of the Ocean Drilling Program. Scientific Results, U.S. Government Printing Office, Washington, DC. 113, 813-827.

Barron, E. J., Washington, W. M., 1982. Atmospheric circulation during warm geologic peroids: Is the equator to pole surface-temperature gradient the controlling factor. Geology, 10, 633-636.

Brass, G. W., Southam, J. R., Peterson, W. H., 1982. Warm saline bottom waters in the ancient ocean. Nature, 296, 620-623.

Corfield, R. M., Norris, R. D., 1996. Deep water circulation in the Paleocene ocean. In: Knox, R. W. O. B., Corfield, R. M., Dunay, R. E. (Eds.), Correlation of the Early Paleogene in Northwest Europe. The Geological Society, London. 443-456.

Dorreen, M.J., 2010.The western Gaj River section, Pakistan, and the Cretaceous- Tertiary boundary, Micropaleontology, 20, 178-193.

Flügel, E., 2004. Microfacies of Carbonate Rocks-Analysis, interpretation and application. Springer-Verlag Berlin Heidelberg, 1-976.

Frank, D. T., Thomas, J. D., Leckie, M. R., Arthur, A. M., Brown, R. P., Jones, K., Lees, A. J., 2005. The Maastrichtian record from Shatsky Rise (northwest Pacific), A tropical perspective on global ecological and oceanographic changes. Earth and Atmospheric Sciences.

Friedrich, O., Herrler, O. J., Kfgler, P., Hemleben, C., 2004. Early Maastrichtian stable isotopes, changing deep water sources in the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology. 171-184.

Haq, B.U., Hardenbol, J., Vail, P. R., 1987. Chronology of fluctuating sea levels since the Triassic Science, 235, 1156-1167.

Hunter, J. S., Valdes, J. P., Haywood, M. A., Markwick, J. P., 2008. Modelling Maastrichtian climate and investigating the role of geography, atmospheric CO2 and vegetation. Climate of the past discussions. 4, 981-1019.

Jung, C., Voigt, S., Friedrich, O., Frank, M., 2012. Late Campanian to Maastrichtianpalae oceanographic changes in the tropical Pacific. Geophysical Research Abstracts,14.

Kadri, I.B., 1995. Petroleum Geology of Pakistan. Pakistan Petroleum Limited, Karachi, Pakistan, 1-275.

Khan, S., 2013. Biostratigraphy and Microfacies of the Cretaceous Sediments in the Indus Basin, Pakistan. Ph.D. thesis, University of Edinburgh, Edinburgh, UK.

Leckie, R.M., 1989. An oceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 107-138.

Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid- Cretaceous. Paleoceanography, 17 (3), 1-29.

Lirer, F., 2000. A new technique for retrieving calcareous microfossils from lithifiedlime deposits. Micropaleontology, 46, 365-369.

Malkani, S.M., 2006. Biodiversity of Saurischian Dinosaurs from the Latest Cretaceous Park of Pakistan, Journel of Applied and Emerging Sciences, (3), 108-140.

Malkani, S.M., 2010. Updated stratigraphy and Mineral potential of Sulaiman basin Pakistan, Sindh Univ. Res. Jour. (Sci.Ser.) 42 (2), 39-66.

Marks, P., 1962. Variation and evolution in Orbitoides of the Cretaceous of Rakhi Nala, West Pakistan. Geological Bulletin University of Punjab, 2, 15-29.

Norris, D. R., Kroon, D., Huber, T. B., Erbacher, J., 2001. Cretaceous- Paleogene ocean and climate change in the subtrophical north atlantic. In: Kroon, D., Norris, D. R., Klaus, A. (Eds.), 2001Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geological Society, London, special publication, 183, 1-22.

Postuma, J., 1971. Manual of Planktonic Foraminifera. Elsevier Publishing Company, Amsterdam, 1- 420.

Premoli-Silva, I., Sliter, W.V., 1994. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. PalaeontographicaItalica, 82, 1-89.

Premoli-Silva, I., Sliter,W. V.,1999.

Cretaceous paleoceanography: Evidence from planktonic foraminiferal evolution. In: Barrera E., Johnson C.C., (Eds.), Evolution of the Cretaceous Ocean-Climate System, Geological Soceity of America, Special Paper, 332, 301-328.

Saltzman, E. S., Barron, E. J., 1982. Deep circulation in the Late Cretaceous, oxygen isotope paleo temperatures from Inoceramus remains in DSDS cores. Palaeogeography, Palaeo- climatology, Palaeoecology, 40, 167-181.

Shah, S.M.I., 2009. Stratigraphy of Pakistan, Memoir of the Geological Survey of Pakistan, 22, 1-381.

Sliter, W.V., 1989. Biostratigraphic zonation for Cretaceous plank tonic foraminifers examined in thin section. Journal of Foraminiferal Research, 19, 1-19.

Sliter, W.V., 1999. Cretaceous planktic foraminiferal biostratigraphy of the Calera Limestone, northern California, USA. Journal of Foraminiferal Research, 29, 318-339.

Sliter, W.V., McGann, M.L., 1992. Age and correlation of the Calera Limestone in the permanent terrain of Northern California, Open file report-US Geological survey, 27.

Smewing, J. D., Warburton, J., Daley, T., Copestake, P., Ul-Haq, N., 2002. Sequence stratigraphy of the southern Kirthar fold belt and middle Indus basin, Pakistan. Geological Society, London, Special Publications, 195(1), 273-299.

Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., Ando, H., 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research, 25(3), 365-390.

Takashima, R., Nishi, R., Hayashi, K., Okada, H., Kawahata, H., Yamanaka, T., Fernando, A.G., Mampuku, M., 2009. Litho-, bio- and Chemostratigraphy across the Cenomanian/Turonian boundary (OAE 2) in the Vocontian Basin of southeastern France. Palaeogeography Palaeoclimatology Palaeoecology, 273, 61-74.

Thibault, N., Harlou, R., Schovsbo, H. N., Stemmerik, L., Surlyk, F., 2016. Late Cretaceous (late Campanian- Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea. Climate of the Past, 12, 429-438.

Thierstein, H. R., 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic deep sea sediments. In: Talwanix, M., Hay, W., Ryan, W. B.F., (Eds.), Deep Drilling Results in the Atlantic Ocean, Continental Margins and Paleo- environment. (Maurice Ewing Ser., 3), American Geophysical Union, Washington, D.C., 249-274.

William, M. D., 1959. Stratigraphy of the Lower Indus Basin, West Pakistan, World Petroleum Congress 5th New York, Proceedings, Section 1, 19, 377-390.

Downloads

Published

2017-11-30

How to Cite

Khan, S., Wadood, B., Ahmed, S., Khan, A., Ahmed, F., & Khan, H. (2017). Evaluating paleoceanographic and planktonic foraminiferal diversification from the Cretaceous Mughal Kot Formation, Mughal Kot Section, Lower Indus Basin, Pakistan. Journal of Himalayan Earth Sciences, 50(2), 27-43. Retrieved from http://ojs.uop.edu.pk/jhes/article/view/1900

Most read articles by the same author(s)

1 2 > >>