Mapping of Au geochemical anomalies using logratio-transformed stream sediment geochemical data in 1:100000 Feyzaabad sheet, Khorasan Razavi, Iran

Authors

  • Farzaneh Zandiyyeh Mining Engineering Department, Shahid Bahonar University, Kerman, Iran.
  • Mohammad Reza Shayestehfar Mining Engineering Department, Shahid Bahonar University, Kerman, Iran.

Keywords:

Compositional data; Log-ratio transformations; Concentration-area plots; Au anomalies; Feyzaabad; Iran

Abstract

In the present study, analyses of log- and logratio-transformation of stream geochemical data of Au in

1:100000 Feyzaabad sheet are compared with each other. Logratio (alr, clr, or ilr) transformations, compared to log-transformation, of stream sediment geochemical data improve mapping of Au anomalies which indicates presence of mineralization. Particularly, the anomaly maps of Au derived from clr- or ilr- transformed stream sediment geochemical data are better, than the anomaly maps of Au derived from log- or alr-transformed data. The results of the study suggest that stream sediment geochemical data in the study area should be clr- or ilr- transformed to enhance recognition of anomalous multi-element associations reflecting the presence of mineralization. The enhancement of anomalous multi-element associations is the most important benefit of either clr- or ilr-transformation compared to either ln- or alr-transformation of stream sediment geochemical data.

References

Afzal, P., Khakzad, A., Moarefvand, P., RashidnejadOmran, N., Esfandiari, B., Fadakar Alghalandis, Y., 2010. Geochemical anomaly separation by multifractal modeling in Kahang (GorGor) porphyry system. Central Iran. Journal of Geochemical Exploration, 104, 34-46.

Agterberg, F.P., Cheng, Q., Wright, D.F., 1993. Fractal modeling of mineral deposits. In: Elbrond J, Tang X (eds.), 24th APCOM symposium proceeding, Montreal, Canada, 43–53.

Aitchison, J., 1981. A new approach to null correlation of proportions. Mathematical Geology, 13, 175-189.

Aitchison, J., 1983. Principal component analysis of compositional data. Biometrika, 1, 57-65.

Aitchison, J., 1984. The statistical analysis of geochemical compositions. Mathematical Geology, 16, 531-564.

Aitchison, J., 1986. The statistical analysis of compositional data. Chapman & Hall, London.

Aitchison, J., 1999. Logratios and natural laws in compositional data analysis. Mathematical Geology, 31, 563-589.

Aitchison, J., Barceló-Vidal, C., Martín- Fernández, J.A., Pawlowsky-Glahn, V., 2000. Logratio analysis and compositional distance, Mathematical Geology, 32, 271–2755.

Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Journal of Royal Statistic Society, 51(4), 375-392.

Bai, J., Porwal, A., Hart, C., Ford, A., Yu, L., 2010. Mapping geochemical singularity using multifractal analysis: application to anomaly definition on stream sediments data from Funin Sheet, Yunnan, China. Journal of Geochemical Exploration, 104, 1–11.

Behrouzi, A., 1987. Geological map of 1:100000 Feyzaabad, Sheet No.:7760, Geological Organization, Tehran, Iran.

Buccianti, A., Pawlowsky-Glahn, V., 2005. New perspective on water chemistry and compositional data analysis. Mathematical Geology, 37, 703-727.

Carranza, E.J.M., 2008. Geochemical anomaly and mineral prospectivety mapping in GIS. Hand book of exploration and environmental geochemistry. Elsevier, Amsterdam.

Carranza, E.J.M., 2011. Analysis and mapping of geochemical anomalies using logratio- transformed stream sediment data with censored values. Journal of Geochemical Exploration, 110(2), 167-181.

Cheng, Q., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal m e t h o d s. Journal of Geochemical Exploration, 54, 109-130.

Cheng, Q., Agterberg, F.P., Bonham-Carter, G.F., 1996. A spatial analysis for geochemical anomaly separation. Journal of Geochemical Exploration, 56, 183-195.

Cheng, Q., Bonham-Carter, G.F., Hall, G.E.M., Bajc, A., 1997. Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial sediments, Sudbury Basin, 1, Multivariate and spatial analysis. Journal of Geochemical Exploration, 59, 27-46.

Cheng, Q., Xu, Y., Grunsky, E., 2000. Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43-52.

Daya, A.A., Afzal, P., 2015. A comparative study of concentration-area (CA) and spectrum-area (SA) fractal models for separating geochemical anomalies in Shorabhaji region, NW Iran. Arabian Journal of Geosciences, 1-13.

Deng, J., Wang, Q., Yang, L., Wang, Y., Gong, Q., Liu, H., 2010. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration, 105, 95–105.

Eftekharnezhad J., Aghanabati A., Baroyant V., Hamzehpour, B., 1976. Geological Quadrangle Map of kashmar, 1: 250000, GIS, Tehran, Iran,

Egozcue, J.J., Pawlowsky-Glahn, V., 2005. Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37, 795–828.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu- Figueraz, G., Barceló-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis, Mathematical Geology, 35(3), 279-300.

Exploration Co. Jiangxi China, 1994. Explanatory text of geochemical map of Feizaabad (7760) Stream sediment survey 1:100000. Report No 22.

Filzmoser, P., Hron, K., Reimann, C., 2009a. Principal component analysis for compositional data with outliers. Environmetrics, 20, 621- 632.

Filzmoser, P., Hron, K., Reimann, C., 2009b. Univariate statistical analysis of environmental (compositional) data- problems and possibilities. Science of Total Environment, 407, 6100-6108.

Filzmoser, P., Hron, K., Reimann, C., 2012. Interpretation of multivariate outliers for compositional data. Computer Geosciences, 39, 77-85.

Gabriel, K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 453-467.

Goldschmidt, V.M., 1937. The principles of distribution of chemical elements in minerals and rocks. Journal of Chemical Society, 655–673.

Hasanipak, A.A., Sharafaldin, M., 2004. GET: a function for preferential site selection of additional borehole drilling. Exploration and Mining Geology, 13(1-4), 139-146.

Hassanpour, S., Afzal, P., 2013. Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arabian Journal of Geosciences, 6, 957–970.

Heydari, A., 2011. Exploration report of Kuh Zar deposit in Torbat-e-Heydarieh area, Zarmehr mining company, 133.

Hosseini, S.A., Afzal, P., Sadeghi, B., Sharmad, T., Shahrokhi, S.V., Farhadinejad, T., 2014. Prospection of Au mineralization based on stream sediments and litho-geochemical data using multifractal modeling in Alut1:100,000 sheet, NW Iran. Arabian Journal of Geosciences, 8(6), 3867-3879.

Kaiser, H.F., 1960. The application of electronic computers to factor analysis. Education Psychological Measurements, 20, 141-151.

Lima, A., De Vivo, B., Cicchella, D., et al., 2003. Multifractal IDW Interpolation and Fractal Filtering Method in Environmental Studies: An Application on Regional Stream Sediments of (Italy), Campania Region. Applied Geochemistry, 18(12), 1853–1865.

Lindenberg, H.G., Gorler, K., Ibbeken, H., 1983. Stratigaphy, structure and orogenic evolution of the sabzevar zone in the area of oryan Khorasan, NE Iran, GSI, Rep. No. 51, 119-143, Tehran Iran.

Mandelbrot, B.B., 1983. The fractal geometry of nature. Freeman, San Francisco.

Mazloumi, A.R., Karimpour, M.H., Rassa, I., Rahimi, B., Vosoughi Abedini, M., 2008. Kuh-E-Zar Gold Deposit in Torbat-e-Heydaryeh, New Model of Gold Mineralization, Iranian Journal of Crystalography and Mineralogy, 16(3), 363-376.

Nazarpour, A., Sadeghi, B., Sadeghi, M., 2015. Application of fractal models to characterization and evaluation of vertical distribution of geochemical data in Zarshuran gold deposit, NW Iran. Journal of Geochemical Exploration, 148, 60-70.

Pawlowsky-Glahn, V., Egozcue, J.J., 2006. Compositional data and their analysis, an introduction; In Buccianti, A., Mateu- Figueras, G., Pawlowsky-Glahn, V.(Eds.), Compositional data analysis in the geosciences: from theory to practice. Geological Society, London.

Rahmati, A., Afzal, P., Abrishamifar, S.A., Sadeghi, B. , 2014. Application of concentration – number and concentration–volume fractal models to delineate mineralized zones in the Sheytoor iron deposit, Central Iran. Arabian Journal of Geosciences, 8(5), 2953-2965.

Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Anna, E.D., 2012. The concept of compositional data analysis in practice Total major element concentrations in agricultural and grazing land soils of Europe. Science of Total Environment, 426, 196-210.

Reimann, C., 2005. Geochemical mapping-technique or art?, Geochemistry: Exploration, Environment, Analysis, 5, 359-370.

R development Core team, 2008. R: a language and environment for statistical computing, Vienna. (http://www.r-project.org).

Sadeghi, B., Moarefvand, P., Afzal, P., Yasrebi, A.B., Daneshvar Saein, L., 2012. Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. Journal of Geochemical Exploration, 122, 9–19.

Shahi, H., Kamkar-Rouhani, A., 2014. A GIS- based weights-of-evidence model for mineral potential mapping of hydrothermal gold deposits in Torbat-e-Heydarieh area, Journal of Mining & Environment, 5(2), 70-89.

Sim, B.L., Agterberg, F.P., Beaudry, C., 1999. Determining the cutoff between background and relative base metal contamination levels using multifractal methods. Computational Geosciences, 25, 1023–1041.

Stöcklin, J., 1968. Structural history and tectonics of Iran, a review. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.

Templ, M., Hron, K., Filzmoser, P., 2009. robCompositions: Robust estimation for compositional data. Manual and package, version, 1(4).

Thió-Henestrosa, S., Martín-Fernández, J.A., 2005. Dealing with compositional data: the freeware CoDaPack. Mathematical Geology, 37(7), 773-793.

Turcotte, D.L., 1986. A fractal approach to the relationship between oregrade and tonnage. Economical Geology, 18, 1525–1532.

Van den Boogart, K.G., Tolosana, R., Bren, M., 2009. Compositions: Compositional data analysis. R package version 1.01-1.

Wang, W., Zhao, J., Cheng, Q., 2014. Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China. Journal of Geochemical Exploration, 141, 6-14.

Zuo, R., 2011. Identifying geochemical anomalies associated with Cu and Pb-Zn Skarn mineralization using principal component analysis and spectrum-area fractal modelling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 111, 13–22

Downloads

Published

2015-11-30

How to Cite

Zandiyyeh , F., & Shayestehfar, M. R. . (2015). Mapping of Au geochemical anomalies using logratio-transformed stream sediment geochemical data in 1:100000 Feyzaabad sheet, Khorasan Razavi, Iran. Journal of Himalayan Earth Sciences, 48(2), 85-100. Retrieved from http://ojs.uop.edu.pk/jhes/article/view/1947