Fibrolitic Sillimanite in Sheared Rocks of the Ambela Granitic Complex Northwestern Pakistan
Abstract
Two-mica granites in the northeastern margin of the Ambela granitic complex underwent cataclastic deformation. The resulting shear zones acted as pathways for the migration of a water-rich fluid phase that also contained boron and some fluorine. This resulted in (1) formation of fibrolitic silimanite and white mica at the expense of feldspars and biotite, especially along micro-shears, (2) bleaching of biotite and release of Fe and Ti oxides, and (3) crystallization of tourmaline and fluorite. Some recrystallization/neo-mineralization of feldspar, quartz and muscovite also occurred due to shearing.
References
Ahmad, R. & Wilson, C.J.L., 1982. Microtextural relationships of sillimanite and 'fibrolite’ at Broken Hill, Australia. Lithos 15, 49-58.
Chatterjee, N.D. & Froese, E.W., 1975. A thermodynamic study of the pseudobinary job muscovite-paragonite in the system KAlSi2O8-NaA.Si3O8-Al2O3-SiO2-H2O. Am. Mineral. 60, 985-993.
Chinner, G.A., 1966. The significance of aluminium silicates in metamorphism. Earth Sci. Rev. 2, 111-126.
Deer, W.A., Howie, R.A. & Zussman, J., 1962a. Rock Forming Minerals, vol. 1. Longman, London.
Deer, W.A., Howie, R.A. & Zussman, J., 1962b. Rock Forming Minerals, vol. 3. Longman, London.
Holdaway, M.J., 1971. Stability of andalusite and the aluminium silicate phase diagram. Am. J. Sci. 271, 97-131.
Kepezhinskas, K.B., 1972. Composition of biotite in medium-temperature metapelites as a function of pressure. Doklady Acad. Sci. USSR, Earth Sci. Sec. 204, 440-443.
Marakushev, A.A. & Tararin, LA., 1965. On the mineralogical criteria of alkalinity of the granites. Izv. Akad. Nauk. SSSR, Ser. Genl. 3, 20-37.
Monier, G., Mergoil-Daniel, J. & Labemardiere, H., 1984. Generations successives d’ musocovites et feldspaths potassi-rues dans les leucoganite du massif dev Millevaches (Massif Central France). Bull. Mineral. 107, 55-68.
Neilson, M.J. & Haynes, S.J., 1973. Biotites in calk-alkaline intrusive rocks. Mineral. Mag. 39, 251-253.
Nockolds, S.R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, 401-420.
Piispanen, R.A., 1983. Major element geochemistry, origin and metallogenetical aspects of biotites of Svecokarelidic granites of northern Finland. Chern. Erde 42, 267-280.
Pitcher, W.A., 1965. The aluminium silicate polymorphs. in Pitcher, W.S. & Flinn, G.W. (Eds.), Controls of Metamorphism. Oliver and Boyd, Edinburgh, 327-341.
Rafiq, M., 1987. Petrology and geochemistry of Ambela granitic complex, N.W.F.P., Pakistan. Unpublished Ph.D. thesis, Univ. of Peshawar.
Richardson, S.W., Gilbert, M.C. & Bell, M.P., 1969. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminium silicate triple point. Am. J. Sci. 267, 259-272.
Sturt, B.A., 1970. Exsolution during metamorphism with particular reference to feldspar solid solution. Mineral. Mag. 37, 815-832.
Vernon, R.H., 1979. Formation of late sillimanite by hydrogen metasomatism (baseleaching) in some high grade gneisses. Lithos 12, 143-152.
Vernon, R.H., & Flood, R.H., 1977. Interpretation of metamorphic assemblages containing fibrolite sillimanite. Contrib. Mineral. Petrol. 59, 227-235.
Watson. J. 1948. Late sillimanite in the migmatites of Kildenan, Sutherland. Geol. Mag. 85, 149-162.
Wintsch R.P. 1975. Solid-fluid equilibria in the system KAlSi3O8-NaAlSi3O8-A12SiO8SiO2-H2O-HCl. J. Petrol. 16, 57-79.