Climate Inclusive Flood Inundation Modeling Using HEC-RAS: A Case Study of Panjkora River, Khyber Pakhtunkhwa, Pakistan
A Case Study of Panjkora River, Khyber Pakhtunkhwa Pakistan
Keywords:
ARC-GIS, ARC-SWAT, Shared Socioeconomic Pathway, Soil and Water Assessment Tool, Hydrologic Engineering , River Analysis SystemAbstract
Floods are among the most devastating climate-induced hazards, with severe socio-economic consequences, particularly in underdeveloped countries. Pakistan is highly vulnerable to climate change and has experienced several catastrophic flood events in recent decades. This study assesses future flood risks in the Panjkora River Basin, one of the major catchments in Khyber Pakhtunkhwa province, using hydrological and hydraulic modelling under different climate change scenarios. The Soil and Water Assessment Tool (SWAT) was employed to simulate hydrological processes using a 29-year weather dataset (1981–2010). Model calibration (1981–2002) and validation (2003–2010) demonstrated strong performance, with coefficient of determination (R²) values of 0.731 and 0.721 and Nash–Sutcliffe efficiency (NSE) values of 0.72 and 0.71, respectively. Future projections were analyzed under Shared Socioeconomic Pathways (SSP 2–4.5, moderate emissions, and SSP 5–8.5, high emissions) for three periods: near future (2026–2050), mid-century (2051–2075), and late century (2076–2099). Flood inundation mapping was conducted using the Hydrologic Engineering Centre’s River Analysis System (HEC-RAS). The results reveal a significant increase in flood inundation, particularly under SSP 5–8.5. Discharge is projected to increase by approximately 25% under SSP 2–4.5 and 27% under SSP 5–8.5 compared to the historical baseline. These findings underscore the increasing flood risks in the Panjkora River Basin under future climate change scenarios and highlight the need for adaptive water resource management and disaster risk reduction strategies in the region.
References
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508. https://doi.org/10.13031/2013.42256
Bahadar, I., Shafique, M., Khan, T., Tabassum, I., & Ali, M. Z. (2015). Flood hazard assessment using hydrodynamic model and GIS/RS tools: A case study of Babuzai-Kabal tehsil, Swat Basin, Pakistan. Journal of Himalayan Earth Sciences, 48(2), 129–138. Retrieved July 23, 2025, from http://ojs.uop.edu.pk/jhes/article/view/1953
Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1–2), 33–45. https://doi.org/10.1016/j.jhydrol.2010.03.027
Bhagat, N. (2017). Flood frequency analysis using Gumbel’s distribution method: A case study of Lower Mahi Basin, India. Journal of Water Resources and Ocean Science, 6(4), 51. https://doi.org/10.11648/j.wros.20170604.11
Brunner, G. W. (2016). River analysis system, 2D modeling user’s manual (Version 5.0, CPD-68A, 171 pp.). U.S. Army Corps of Engineers. Retrieved from https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS
Budhathoki, A., Babel, M. S., Shrestha, S., Meon, G., & Kamalamma, A. G. (2021). Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrology & Hydrobiology, 21(1), 79–95. https://doi.org/10.1016/j.ecohyd.2020.07.001
Callaghan, D. P., & Hughes, M. G. (2022). Assessing flood hazard changes using climate model forcing. Natural Hazards and Earth System Sciences, 22(8), 2459–2472. https://doi.org/10.5194/nhess-22-2459-2022
Cunderlik, J. M., & Burn, D. H. (2002). Local and regional trends in monthly maximum flows in Southern British Columbia. Canadian Water Resources Journal, 27(2), 191–212. https://doi.org/10.4296/cwrj2702191
Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E., & Beven, K. J. (2010). Flood-plain mapping: A critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 55(3), 364–376. https://doi.org/10.1080/02626661003683389
Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., ... & Midgley, P. M. (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press.
Garee, K., Chen, X., Bao, A., Wang, Y., & Meng, F. (2017). Hydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment, Hunza. Water, 9(1), 17. https://doi.org/10.3390/w9010017
Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250. https://doi.org/10.13031/2013.23637
Gebrechorkos, S. H., Bernhofer, C., & Hülsmann, S. (2020). Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Science of The Total Environment, 742, 140504. https://doi.org/10.1016/j.scitotenv.2020.140504
HEC-US Army Corps of Engineers. (2016). HEC-RAS river analysis system: User’s manual (Version 5.0).
Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., & Kimoto, M. (2008). Global projections of changing risks of floods and droughts in a changing climate. Hydrological Sciences Journal, 53(4), 754–772. https://doi.org/10.1623/hysj.53.4.754
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821. https://doi.org/10.1038/nclimate1911
Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1–4), 87–99. https://doi.org/10.1016/S0022-1694(02)00121-X
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C. J. H., Mechler, R., Botzen, W. J. W., Bouwer, L. M., Pflug, G., Rojas, R., & Ward, P. J. (2014). Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4(4), 264–268. https://doi.org/10.1038/nclimate2124
Khan, S. N., Khan, A. N., Ali, M., & Bangash, A. A. (2019). Flood probability analysis for different return periods in District Peshawar, Pakistan. Journal of Himalayan Earth Sciences, 52(2), 225–236. http://ojs.uop.edu.pk/jhes/article/view/1840
Khan, M., Uzair, A., Ali, U., & Khan, W. (2020). Flood modeling of Naray-Khwar using HEC-RAS. Journal of Himalayan Earth Sciences, 53(1), 1–11. http://ojs.uop.edu.pk/jhes/article/view/1808
Kundzewicz, Z.W., Kanae, S., Seneviratne, S.I., Handmer, J., Nicholls, N., Peduzzi, P., Mechler, R., Bouwer, L.M., Arnell, N., Mach, K., Muir-Wood, R., Brakenridge, G.R., Kron, W., Benito, G., Honda, Y., Takahashi, K. & Sherstyukov, B. (2014). Flood risk and climate change: Global and regional perspectives. Hydrological Sciences Journal, 59(1), 1–28. https://doi.org/10.1080/02626667.2013.857411
Merz, B., Thieken, A. H., & Gocht, M. (2007). Flood risk mapping at the local scale: Concepts and challenges. Advances in Natural and Technological Hazards Research, 25, 231–251. https://doi.org/10.1007/978-1-4020-4200-3_13
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Climate change: Stationarity is dead: Whither water management? Science, 319(5863), 573–574. https://doi.org/10.1126/science.1151915
Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F., & Matthew, R. A. (2017). Compounding effects of sea level rise and fluvial flooding. Proceedings of the National Academy of Sciences, 114(37), 9785–9790. https://doi.org/10.1073/pnas.1620325114
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and Water Assessment Tool theoretical documentation. Texas.
Ougahi, J. H., Cutler, M. E. J., & Cook, S. J. (2022). Modelling climate change impact on water resources of the Upper Indus Basin. Journal of Water and Climate Change, 13(2), 482–504. https://doi.org/10.2166/wcc.2021.233
Papaioannou, G., Vasiliades, L., & Loukas, A. (2015). Multi-criteria analysis framework for potential flood-prone areas mapping. Water Resources Management, 29(2), 399–418. https://doi.org/10.1007/s11269-014-0817-6
Roy, B., Khan, M. S. M., Islam, A. K. M. S., Mohammed, K., & Khan, M. J. U. (2021). Climate-induced flood inundation for the Arial Khan River of Bangladesh using open-source SWAT and HEC-RAS model for RCP8.5-SSP5 scenario. SN Applied Sciences, 3(6), 1–12. https://doi.org/10.1007/s42452-021-04460-4
Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F. W., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006
Ullah, K., & Zhang, J. (2020). GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLoS ONE, 15(3), e0229153. https://doi.org/10.1371/journal.pone.0229153
Van Alphen, J., Martini, F., Loat, R., Slomp, R., & Passchier, R. (2009). Flood risk mapping in Europe: Experiences and best practices. Journal of Flood Risk Management, 2(4), 285–292. https://doi.org/10.1111/j.1753-318x.2009.01045.x
Ward, P. J., De Moel, H., & Aerts, J. C. J. H. (2011). How are flood risk estimates affected by the choice of return periods? Natural Hazards and Earth System Sciences, 11(12), 3181–3195. https://doi.org/10.5194/nhess-11-3181-2011
Wei, H., Gutowski, W. J., Vörösmarty, C. J., & Fekete, B. M. (2002). Calibration and validation of a regional climate model for Pan-Arctic hydrologic simulation. Retrieved May 25, 2025, from https://academicworks.cuny.edu/asrc_pubs/8