Geophysical insights into Tattapani Thermal Spring Azad Kashmir Pakistan: unravelling subsurface geology and geothermal potential
Keywords:
Geophysical investigation, Thermal spring, Resistivity structure, Lithological analysis, Vertical Electrical Sounding (VES)Abstract
Pakistan faces a growing energy demand, and thermal springs represent a potentially significant renewable energy source. This naturally heated thermal water can be harnessed for power generation, space heating, and greenhouses, offering a renewable and sustainable alternative to fossil fuels. Pakistan possesses significant, yet underdeveloped, thermal potential, and exploring and harnessing these resources could yield substantial environmental and economic benefits. The Tattapani thermal spring in Kotli, Azad Kashmir, is investigated for its geothermal energy potential due to its probable high temperatures, favorable geological conditions, and accessibility. The study aims to identify the subsurface geological structure, map the lithology, estimate the depth of the thermal spring reservoir, and infer the migration patterns of the thermal water. The resistivity profile of the Tattapani thermal spring unveiled five distinct layers exhibiting varying resistivity values. The uppermost layer, characterized by a high resistivity zone (> 500Ωm), corresponds to the dolomitic rock of the Abbottabad Formation. The second layer delineates lithological units of Murree sandstone, displaying resistivity values between >200Ωm and ≤500Ωm, indicative of potential meteoric freshwater. The third layer, marked by a resistivity range of >50Ωm to ≤200Ωm, signifies shaley to clayey lithology of the Patala Formation, indicating weathering and erosion by thermal fluid. The fourth layer corresponds to the migration of thermal plumes with a resistivity value of >25Ωm to ≤50Ωm, while a value of >05Ωm characterizes the fifth thermal spring layer of very low resistivity to ≤25Ωm. The very low resistivity values observed in the fifth layer are indicative of an anomalous zone, a characteristic feature of thermal springs. This low resistivity can be attributed to the high concentration of dissolved electrolytes within the mineral-rich thermal fluids. These fluids likely facilitate the alteration, weathering, and erosion of the surrounding rock formations, further enhancing the conductive nature of the zone. The Tattapani thermal spring exhibits a depth range of approximately 35-40 meters, increasing in the northeast-southwest (NE-SW) direction. Thermal plumes, primarily migrating in a NE-SW direction, have a depth range of about 25 meters. The VES data also delineates two aquifers: a shallow aquifer at approximately 10 meters’ depth and a deeper aquifer extending up to 20 meters, both hosted within the sandstone lithology. The shallow depth of the thermal plumes raises concerns about potential contamination of the deeper groundwater aquifer due to their overlapping depths. However, the presence of a barrier layer composed of shaley clay likely protects the shallow aquifer from current contamination. VES data revealed high-resistivity zones (dolomite) and low-resistivity zones (shale), consistent with Cambrian-Paleocene formations. The thermal spring is likely to emerge to the surface through a weak zone along the contact of shale and dolomite. A close correlation between the geological and resistivity sections suggests the presence of a fault or weak zone underlying the spring. This structure could facilitate a thermal convection cell, drive hot water upwelling, and potentially source it from the Poonch River. Detailed magnetic, gravity, and geochemical surveys are recommended to portray the deep-seated structure of the Tattapani thermal spring, while a geochemical survey will demarcate the contamination source by plume migration. Geothermometry and isotopic analysis are also recommended to show the subsurface temperature of thermal water.
References
Abdulkadir, Y. A., & Eritro, T. H. (2017). 2D resistivity imaging and magnetic survey for characterization of thermal springs: A case study of Gergedi thermal springs in the northwest of Wonji, Main Ethiopian Rift, Ethiopia. Journal of African Earth Sciences, 133, 95–103.
Ahmad, I., & Rashid, A. (2010). Study of geothermal energy resources of Pakistan for electric power generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(9), 826–838.
Ahmad, J. (2014). The geothermal energy potential of Pakistan: Clean sustainable solution for our energy future. GRC Transactions, 38, 571–576.
Ahmad, U. S., Usman, M., Hussain, S., Jahanger, A., & Abrar, M. (2022). Determinants of renewable energy sources in Pakistan: An overview. Environmental Science and Pollution Research, 29(19), 29183–29201.
Ahmed, I., Liu, H., Chen, R., Ahmad, J., Shah, S. A., Fahad, S., Rahim, O. A., Ullah, F., & Rui, L. (2024). Geothermal resource exploration in Reshi Town by integrated geophysical methods. Energies, 17(4), 856.
Akpan, A. E., Ekwok, S. E., Ben, U. C., Ebong, E. D., Thomas, J. E., Ekanem, A. M., George, N. J., Abdelrahman, K., Fnais, M. S., & Eldosouky, A. M. (2023). Direct detection of groundwater accumulation zones in saprock aquifers in tectono-thermal environments. Water, 15(22), 3946.
Aksoy, N., Şimşek, C., & Gunduz, O. (2009). Groundwater contamination mechanism in a geothermal field: A case study of Balcova, Turkey. Journal of Contaminant Hydrology, 103(1–2), 13–28.
Anees, M., Shah, M. M., & Qureshi, A. (2017). Multi-proxy approach to evaluate and delineate the potential of hot springs in the Kotli District (Kashmir, Pakistan). Geologica Acta, 15(3), 217–230.
Anees, M., Shah, M. M., & Qureshi, A. A. (2015). Isotope studies and chemical investigations of Tattapani hot springs in Kotli (Kashmir, NE Pakistan): Implications on reservoir origin and temperature. Procedia Earth and Planetary Science, 13, 291–295.
Araffa, S. A. S., Helaly, A. S., Khozium, A., Lala, A. M., Soliman, S. A., & Hassan, N. M. (2015). Delineating groundwater and subsurface structures using 2D resistivity, gravity, and 3D magnetic data interpretation around Cairo–Belbies Desert Road, Egypt. NRIAG Journal of Astronomy and Geophysics, 4(1), 134–146.
Ashadi, A. L., Tezkan, B., Yogeshwar, P., Hanstein, T., Kirmizakis, P., Khogali, A., Chavanidis, K., & Soupios, P. (2024). Magnetotelluric case study from Ain Al-Harrah hot spring, Al-Lith, Saudi Arabia. Arabian Journal for Science and Engineering, 49(1), 899–912.
Awan, A. A., & Sohail, M. (2023). Determinants of electricity demand: An empirical analysis of Pakistan. Journal of Energy and Environmental Policy Options, 2(4), 72–82.
Bakar, M. A. (1955). Thermal springs of Pakistan (Vol. 7, pp. 1–30). Geological Survey of Pakistan.
Bakar, M. A. (1965). Thermal springs of Pakistan (Record 16). Geological Survey of Pakistan.
Bakht, M. S. (2000). An overview of geothermal resources of Pakistan. In Proceedings of the World Geothermal Congress (pp. 77–83).
Batayneh, A. T. (2013). The estimation and significance of Dar-Zarrouk parameters in the exploration of quality affecting the Gulf of Aqaba coastal aquifer systems. Journal of Coastal Conservation, 17, 623–635.
Bayowa, O., Afolabi, O., Akinluyi, F., Oshonaiye, A., Adelere, I., & Mudashir, A. (2023). Integrated geoelectrics and hydrogeochemistry investigation for potential groundwater contamination around a reclaimed dumpsite in Taraa, Ogbomoso, Southwestern Nigeria. International Journal of Energy and Water Resources, 7(1), 133–154.
Bobachev, C. (2002). IPI2Win: A Windows software for automatic interpretation of resistivity sounding data (Master’s thesis). Moscow State University.
Bouaicha, F., Dib, H., Bouteraa, O., Manchar, N., Boufaa, K., Chabour, N., & Demdoum, A. (2019). Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochimica, 38, 683–702.
Chabaane, A., Redhaounia, B., & Gabtni, H. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, 134, 292–298.
Cheon, Y., Shin, Y. H., Park, S., Choi, J.-H., Kim, D.-E., Ko, K., Ryoo, C.-R., Kim, Y.-S., & Son, M. (2023). Structural architecture and late Cenozoic tectonic evolution of the Ulsan Fault Zone, SE Korea. Frontiers in Earth Science, 11, 1183329.
Dambly, M. L., Samrock, F., Grayver, A., Eysteinsson, H., & Saar, M. O. (2024). Geophysical imaging of the active magmatic intrusion and geothermal reservoir beneath the Corbetti prospect, Main Ethiopian Rift. Geophysical Journal International, 236(3), 1764–1781.
Dávalos-Elizondo, E., Atekwana, E. A., Tsokonombwe, G., Laó-Dávila, D. A., & Mortensen, A. (2021). Medium- to low-enthalpy geothermal reservoirs estimated from geothermometry and mixing models of hot springs along the Malawi Rift Zone. Geothermics, 89, 101963.
Dotsika, E., Poutoukis, D., Michelot, J.-L., & Kloppmann, W. (2006). Stable isotope and chloride–boron study for tracing boron contamination sources in groundwater. Water, Air, and Soil Pollution, 174, 19–32.
Escobedo, D., Patrier, P., Beaufort, D., Gibert, B., Levy, L., Findling, N., & Mortensen, A. (2021). Paragenetic sequence of clay minerals and alteration zoning in the Krafla geothermal system. Minerals, 11(9), 935.
Ewusi, A., Attobrah, B., & Seidu, J. (2024). Estimation of aquifer transmissivity at Gushiegu and Karaga districts of Northern Ghana using Dar-Zarrouk parameters. International Journal of Energy and Water Resources, 8(1), 55–71.
Finn, C. A., Bedrosian, P. A., Holbrook, W. S., Auken, E., Bloss, B. R., & Crosbie, J. (2022). Geophysical imaging of the Yellowstone hydrothermal plumbing system. Nature, 603(7902), 643–647.
Fu, Z., Zhang, Y., Ji, H., Zhang, C., Chen, D., & Qin, Y. (2024). Characteristics of resistivity variation in deep granite and in-situ detection applications. Scientific Reports, 14(1), 6120.
Holechek, J. L., Geli, H. M., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792.
Iduma, R. E. O., & Uko, E. D. (2016). Dar-Zarrouk parameter as a tool for evaluation of well locations in Afikpo and Ohaozara, Southeastern Nigeria. Journal of Water Resource and Protection, 8(4), 505–515.
Jabrane, O., Martínez-Pagán, P., Martínez-Segura, M. A., Alcalá, F. J., El Azzab, D., Vásconez-Maza, M. D., & Charroud, M. (2023). Integration of electrical resistivity and seismic refraction tomography to investigate sinkholes in karst areas. Water, 15(12), 2192.
Agheem, M. H., Jamali, M. A., Markhand, A. H., Shaikh, S. A., Arain, A. Y. W., Sahito, A. G., Memon, K. A., & Mujtaba, W. H. (2021). Exploration of shallow geothermal energy aquifers by using electrical resistivity survey in Laki Range, Jamshoro District, Sindh, Pakistan. International Journal of Economic and Environmental Geology, 12(1), 46–52.
Joshua, E. O., Odeyemi, O. O., & Fawehinmi, O. O. (2011). Geoelectric investigation of the groundwater potential of Moniya Area, Ibadan. Journal of Geology and Mining Research, 3(3), 54–62.
Junaid, M., Abdullah, R. A., Sa’ari, R., Ali, W., Rehman, H., Alel, M. N. A., & Ghani, U. (2021). 2D electrical resistivity tomography: An advanced and expeditious exploration technique for current challenges to the mineral industry. Journal of Himalayan Earth Sciences, 54(1), 11–32.
Kanwal, S., Mehran, M. T., Hassan, M., Anwar, M., Naqvi, S. R., & Khoja, A. H. (2022). An integrated future approach for the energy security of Pakistan: Replacement of fossil fuels with syngas for better environment and socio-economic development. Renewable and Sustainable Energy Reviews, 156, 111978.
Kaur, S., Yadav, J. S., Bhambri, R., Sain, K., & Tiwari, S. K. (2023). Assessment of geothermal potential of Kumaun Himalaya: A perspective for harnessing green energy. Renewable Energy, 212, 940–952.
Kazakis, N., Vargemezis, G., & Voudouris, K. S. (2016). Estimation of hydraulic parameters in a complex porous aquifer system using geoelectrical methods. Science of the Total Environment, 550, 742–750.
Khan, R., Shah, S. H., & Khan, N. A. (1999). Investigation of the geothermal springs of the Tatta Pani area, District Kotli, Azad Jammu & Kashmir. Geological Survey of Pakistan, 701.
Komori, S., Takakura, S., Mitsuhata, Y., Yokota, T., Uchida, T., Makino, M., Kato, Y., & Yamamoto, K. (2024). Three-dimensional resistivity structure in Toya Caldera region, southwest Hokkaido, Japan: Constraints on magmatic and geothermal activities. Geophysics, 89(1), B31–B50.
Krzyżak, A. T., Habina-Skrzyniarz, I., Machowski, G., & Mazur, W. (2020). Overcoming the barriers to the exploration of nanoporous shales porosity. Microporous and Mesoporous Materials, 298, 110003.
Ladygin, V., Frolova, Y. V., & Rychagov, S. (2014). The alteration of effusive rocks due to acidic leaching by shallow thermal waters: The Baranskii geothermal system, Iturup Island. Journal of Volcanology and Seismology, 8, 17–33.
Loke, M. H., Rucker, D., Chambers, J., Wilkinson, P., & Kuras, O. (2020). Electrical resistivity surveys and data interpretation. In Encyclopedia of Solid Earth Geophysics (pp. 1–6). Springer.
Lund, J. W., & Toth, A. N. (2021). Direct utilization of geothermal energy: 2020 worldwide review. Geothermics, 90, 101915.
Mahmud, S., Hamza, S., Irfan, M., Huda, S. N.-u., Burke, F., & Qadir, A. (2022). Investigation of groundwater resources using electrical resistivity sounding and Dar Zarrouk parameters for Uthal, Balochistan, Pakistan. Groundwater for Sustainable Development, 17, 100738.
Maillet, R. (1947). The fundamental equations of electrical prospecting. Geophysics, 12(4), 529–556.
Markússon, S. H., & Stefánsson, A. (2011). Geothermal surface alteration of basalts, Krýsuvík, Iceland: Alteration mineralogy, water chemistry, and effects of acid supply on the alteration process. Journal of Volcanology and Geothermal Research, 206(1–2), 46–59.
Mohammed, M. A., Szabó, N. P., Alao, J. O., & Szűcs, P. (2024). Geophysical characterization of groundwater aquifers in the Western Debrecen area, Hungary: Insights from gravity, magnetotelluric, and electrical resistivity tomography. Sustainable Water Resources Management, 10(2), 67.
Mughal, M. N., Khan, R., & Hussain, A. (2004). Geological map of the Kotli area, part of Kotli and Sudhonti districts, AJK (43 G/14). Geological Survey of Pakistan.
Nastasi, B., Markovska, N., Pukšec, T., Duić, N., & Foley, A. (2022). Renewable and sustainable energy challenges to face for the achievement of Sustainable Development Goals. In Elsevier (Vol. 157, p. 112071).
Navarro, A., Font, X., & Viladevall, M. (2011). Geochemistry and groundwater contamination in the La Selva geothermal system (Girona, Northeast Spain). Geothermics, 40(4), 275–285.
Nieto, I. M., Martín, A. F., Blázquez, C. S., Aguilera, D. G., García, P. C., Vasco, E. F., & García, J. C. (2019). Use of 3D electrical resistivity tomography to improve the design of low-enthalpy geothermal systems. Geothermics, 79, 1–13.
Olabi, A. G., Mahmoud, M., Soudan, B., Wilberforce, T., & Ramadan, M. (2020). Geothermal-based hybrid energy systems: Toward eco-friendly energy approaches. Renewable Energy, 147, 2003–2012.
Oyeyemi, K. D., Abuka-Joshua, J., Rotimi, O. J., Dieppois, B., Gomo, M., Olaojo, A. A., Falae, P. O., & Metwaly, M. (2023). Geoelectrical characterization of coastal aquifers in Agbado-Ijaye, Lagos, Southwestern Nigeria: Implications for groundwater resources sustainability. Sustainability, 15(4), 3538.
Pavić, M., Kosović, I., Pola, M., Urumović, K., Briški, M., & Borović, S. (2023). Multidisciplinary research of thermal springs area in Topusko (Croatia). Sustainability, 15(6), 5498.
Rashid, M. U., & Anwar, S. (2018). Subsurface mapping of geothermal hot spring at Tattapani Kotli, Azad Jammu and Kashmir using vertical electrical sounding. Geological Survey of Pakistan, 1029, 1–30.
Rashid, M. U., Ahmed, W., Anwar, S., Abbas, S. A., Khan, S., & Ahmed, K. A. (2018). Geo-electrical survey for the appraisal of groundwater resources in Siwalik Group: A case study of Khrick Rawlakot, Azad Kashmir. Journal of Himalayan Earth Sciences, 51(1), 44–60.
Rashid, M. U., Ahmed, W., Anwar, S., Abbas, S. A., Waseem, M., & Khan, S. (2017). Groundwater resource characterization using geo-electrical survey: A case study of Rawlakot, Azad Jammu and Kashmir. Journal of Himalayan Earth Sciences, 50(2), 125–136.
Raza, M. A., Khatri, K. L., Israr, A., Haque, M. I. U., Ahmed, M., Rafique, K., & Saand, A. S. (2022). Energy demand and production forecasting in Pakistan. Energy Strategy Reviews, 39, 100788.
Rosado-Fuentes, A., Arciniega-Ceballos, A., Hernández-Quintero, E., Arango-Galván, C., Salas-Corrales, J. L., & Mendo-Pérez, G. (2023). Mapping near-surface structures using magnetic and electromagnetic induction gradients. Journal of Applied Geophysics, 215, 105123.
Shah, S. H., Abbas, Q., & Tariq, M. (2007). Geological map of Tatta Pani Coal Field, District Kotli, Azad Kashmir. Geological Survey of Pakistan.
Shahid, M., Ullah, K., Imran, K., Mahmood, I., & Mahmood, A. (2020). Electricity supply pathways based on renewable resources: A sustainable energy future for Pakistan. Journal of Cleaner Production, 263, 121511.
Shuja, T., & Sheikh, M. (1983). A study of geothermal resources of Gilgit and Hunza agencies, northern Pakistan. Geological Survey of Pakistan, Information Release 179, 22.
Shuja, T. A. (1986). Geothermal areas in Pakistan. Geothermics, 15(5), 719–723.
Shuja, T. A. (1988). Small geothermal resources in Pakistan. Geothermics, 17(2), 461–464.
Shuja, T. A., & Khan, N. A. (1984). Prospects of geothermal energy in Pakistan. Geological Survey of Pakistan, 242.
Singh, S., Gautam, P. K., Bagchi, D., Singh, S., Kumar, S., & Kannaujiya, S. (2021). 2D electrical resistivity imaging for geothermal groundwater characterization and rejuvenation of the Gaurikund hot spring in the MCT zone, Garhwal Himalaya, Uttarakhand, India. Groundwater for Sustainable Development, 15, 100686.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press.
Thakur, V., Jayangondaperumal, R., & Malik, M. (2010). Redefining Medlicott–Wadia’s main boundary fault from Jhelum to Yamuna: An active fault strand of the main boundary thrust. Tectonophysics, 489(1), 29–42.
Todaka, N., Shuja, T. A., Jamiluddin, S., Khan, N. A., Pasha, M. A., & Iqbal, M. (1988). A preliminary study of geothermal energy resources of Pakistan. Geological Survey of Pakistan, 407, 1–55.
Wang, B., Zhou, X., Li, J., Zhang, Y., Shen, J., Zhong, J., & Bao, Z. (2024). Hydrogeochemical and geothermal features of thermal springs along the Ganzi–Yushu fault, eastern Tibetan Plateau. Applied Geochemistry, 161, 105898.
Wang, J., Gao, S., Wang, J., Li, L., Gong, X., & Su, J. (2024). Application of integrated geophysical techniques in geothermal exploration in Binhai County, Jiangsu Province. Deep Underground Science and Engineering.
Yang, Y., Cao, Q., Fang, C., & Zhu, C. (2023). Characteristics of geothermal field and evaluation of geothermal resource potential in the Yingjiang Basin. Energy Geoscience, 100210.
Yang, Y., Xiong, B., Peng, S., Chen, H., Zhang, T., & Liu, L. (2022). Geothermal exploration using numerical simulation and comprehensive electromagnetic method. Petroleum Science and Technology, 1–25.
Yanis, M., Ismail, N., & Abdullah, F. (2022). Shallow structure fault and fracture mapping in Jaboi Volcano, Indonesia, using VLF–EM and electrical resistivity methods. Natural Resources Research, 1–18.
Zaigham, N. A., & Nayyar, Z. A. (2010). Renewable hot dry rock geothermal energy source and its potential in Pakistan. Renewable and Sustainable Energy Reviews, 14(3), 1124–1129.
Zaigham, N. A., Nayyar, Z. A., & Hisamuddin, N. (2009). Review of geothermal energy resources in Pakistan. Renewable and Sustainable Energy Reviews, 13(1), 223–232.
Zhou, X., Zhuo, L., Wu, Y., Tao, G., Ma, J., Jiang, Z., Sui, L., Wang, Y., Wang, C., & Cui, J. (2023). Origin of some hot springs as conceptual geothermal models. Journal of Hydrology, 624, 129927.
Zhu, Y.-Q., Li, D.-Q., Zhang, Q.-X., Zhang, X., Liu, Z.-J., & Wang, J.-H. (2022). Characteristics of geothermal resources in Qiabuqia, Gonghe Basin: Evidence from high-precision resistivity data. Ore Geology Reviews, Article 105053.