Modeling Forest Biodiversity under Climate Change: A MaxEnt Case Study of Cedrus Deodara in Khyber Pakhtunkhwa, Pakistan
Keywords:
GBIF, MaxEnt, Species Distribution, Habitat Conservation, Biodiversity, Climate ChangeAbstract
This study models the current and future distribution of Cedrus Deodara, a native conifer of Khyber Pakhtunkhwa (KP), Pakistan, at a spatial resolution of 1 km. Presence-only occurrence data were obtained from the Global Biodiversity Information Facility (GBIF) and combined with bioclimatic and topographic variables. To reduce redundancy, a multicollinearity test was performed on 22 candidate predictors, and highly correlated variables (r ≥ 0.9) were excluded. The Maximum Entropy (MaxEnt) model was applied to predict species distribution under present conditions and two future climate scenarios (SSP2-4.5 and SSP5-8.5) for 2090. Model performance was evaluated using the AUC, TSS, and overall accuracy. The obtained results show a good performance of the model for present and future models as well, gaining the ROC-AUC value of 0.72 and 0.77, respectively. Based on the 10th percentile training presence-threshold dependent, the overall accuracy of the model and TSS are 0.75 and 0.74, respectively. Jackknife analysis revealed precipitation variables as the most influential contributors to Cedrus Deodara distribution. Results suggest that the species will experience substantial habitat contraction under SSP2-4.5, whereas distributional shifts under SSP5-8.5 are comparatively minor. These findings emphasize the vulnerability of Cedrus Deodara to climate change and demonstrate the value of MaxEnt modeling for informing conservation and management strategies in biodiversity-rich regions.
References
Ahmad, A., Liu, J., Liu, Q., Ullah, S., Khalid, F., Taimur, M.I., Mannan, A. (2024). Tree species composition, growing stock and biomass carbon dynamics of the major timber species in Hindu Kush Regions of Pakistan. Brazilian Journal of Biology, 84, e256425. https://doi.org/10.1590/1519-6984.256425
Ali, K., Ahmad, H., Khan, N., & Jury, S. (2014). Future of Abies pindrow in Swat District, Northern Pakistan. Journal of Forestry Research, 25(1), 211–214. https://doi.org/10.1007/s11676-014-0446-1
Ali, A., Ashraf, M. I., Gulzar, S., & Akmal, M. (2020). Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: Implications for REDD+ and climate change mitigation. Environmental Monitoring and Assessment, 192(3), 198. https://doi.org/10.1007/s10661-020-8157-x
Ali, F., Khan, N., Khan, A. M., Ali, K., & Abbas, F. (2023). Species distribution modelling of Monotheca buxifolia (Falc.) A. DC.: Present distribution and impacts of potential climate change. Heliyon, 9(2), e13417. https://doi.org/10.1016/j.heliyon.2023.e13417
Ali, S., Ali, H., Baharanchi, O. G., Sher, H., & Yousefpour, R. (2024). Investigating endemic species conservation hotspots based on species distribution models in Swat Region, Hindu Kush Pakistan. Land, 13(6), 737. https://doi.org/10.3390/land13060737
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Arshad, F., Waheed, M., Fatima, K., Harun, N., Iqbal, M., Fatima, K., & Umbreen, S. (2022). Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (Sm.) Seem. in Pakistan. Sustainability, 14(12), 7215. https://doi.org/10.3390/su14127215
Asad, F., Adil, M., Shaid, S., & Ahmad, M. (2024). Dendrochronological study of Abies pindrow (Royle ex D. Don) Royle (Fir) as aspect of tree growth and climate change analysis in Hindu Kush, Northern Pakistan. Pakistan Journal of Botany, 56(5). https://doi.org/10.30848/PJB2024-5(6)
Ashcroft, M. B., French, K. O., & Chisholm, L. A. (2011). An evaluation of environmental factors affecting species distributions. Ecological Modelling, 222(3), 524–531. https://doi.org/10.1016/j.ecolmodel.2010.10.003
Chaudhary, A. K., Ahmad, S., & Mazumder, A. (2011). Cedrus deodara (Roxb.) Loud.: A review on its ethnobotany, phytochemical and pharmacological profile. Pharmacognosy Journal, 3(23), 12–17. https://doi.org/10.5530/pj.2011.23.2
Durrani, M. A., Raza, R., Shakil, M., Sabir, S., & Danish, M. (2024). Tree species migration to north and expansion in their habitat under future climate: An analysis of eight tree species in Khyber Pakhtunkhwa, Pakistan. Journal of Ecology and Environment, 48, 10. https://doi.org/10.5141/jee.23.082
Gilani, H., Goheer, M. A., Ahmad, H., & Hussain, K. (2020). Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecological Indicators, 111, 106049. https://doi.org/10.1016/j.ecolind.2019.106049
Gillani, S. W., Ahmad, M., Manzoor, M., Waheed, M., Tribsch, A., Shaheen, H., Mehmood, A. B., Fonge, B. A., & Al-Andal, A. (2025). Synergizing population structure, habitat preferences, and ecological drivers for conservation of Cedrus deodara. BMC Plant Biology, 25(1), 599. https://doi.org/10.1186/s12870-025-06664-x
Guillaumot, C., Artois, J., Saucède, T., Demoustier, L., Moreau, C., Eléaume, M., Agüera, A., & Danis, B. (2019). Broad-scale species distribution models applied to data-poor areas. Progress in Oceanography, 175, 198–207. https://doi.org/10.1016/j.pocean.2019.04.007
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009.
https://doi.org/10.1111/j.1461-0248.2005.00792.x
Hassan, S. N. ul, Reba, M. N. M., & Ahmed, A. (2025). Extracting clear ice surface of mountainous glaciers of Karakoram Range using machine learning for different band ratio compositions of OLI: Case study of Hunza Sub-Basin. Journal of Himalayan Earth Sciences, 58(1), 1–20. http://ojs.uop.edu.pk/jhes/article/view/1764
Javidan, N., Kavian, A., Pourghasemi, H. R., Conoscenti, C., Jafarian, Z., & Rodrigo-Comino, J. (2021). Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Scientific Reports, 11(1), 6496. https://doi.org/10.1038/s41598-021-85862-7
Khan, N., Shah, S. J., Rauf, T., Zada, M., Yukun, C., & Harbi, J. (2019). Socioeconomic impacts of the Billion Trees Afforestation Program in Khyber Pakhtunkhwa Province, Pakistan. Forests, 10(8), 703. https://doi.org/10.3390/f10080703
Khan, N., Ali, K., & Saeed, S. (2021). How environmental variables determine the Pinus roxburghii distribution in Swat Hindu Kush Range of Pakistan: Current and future prospects. Applied Ecology and Environmental Research, 19(3), 2405–2424. https://doi.org/10.15666/aeer/1903_24052424
Khanal, S., Timilsina, R., Behroozian, M., Peterson, A. T., Poudel, M., Alwar, M. S. S., Wijewickrama, T., & Osorio-Olvera, L. (2022). Potential impact of climate change on the distribution and conservation status of Pterocarpus marsupium. Ecological Informatics, 70, 101722. https://doi.org/10.1016/j.ecoinf.2022.101722
Kharel, B., Ayer, S., Kafle, S., Timilsina, S., Bhatta, K. P., Gautam, J., Acharya, A. K., Lamichhane, P., & Airee, J. (2024). Current and future habitat suitability modelling of Bambusa teres outside forest areas in Nepal under climate change scenarios. Advances in Bamboo Science, 9, 100112. https://doi.org/10.1016/j.bamboo.2024.100112
Kunwar, R. M., Thapa-Magar, K. B., Subedi, S. C., Kutal, D. H., Baral, B., Joshi, N. R., Adhikari, B., Upadhyaya, K. S., Thapa-Magar, S., Ansari, A. S., Thapa, G. J., & Bhandari, A. R. (2023). Distribution of important medicinal plant species in Nepal under past, present, and future climatic conditions. Ecological Indicators, 146, 109879. https://doi.org/10.1016/j.ecolind.2023.109879
Lobo, F., Espinoza, R. E., & Quinteros, S. (2010). A critical review and systematic discussion of recent classification proposals for Liolaemid lizards. Zootaxa, 2549(1). https://doi.org/10.11646/zootaxa.2549.1.1
Liu, Q. (2016). Interlinking climate change with water-energy-food nexus and related ecosystem processes in California case studies. Ecological Processes, 5(1), 14. http:// doi.org/10.1186/s13717-016-0058-0
Malik, S. M., Arshad, S., Alam, K., & Bilal, O. (2020). Monitoring urban growth and land use changes using GIS and remote sensing: A case study of Tehsil Burewala. Journal of Himalayan Earth Sciences, 53(1), 140–158.
http://ojs.uop.edu.pk/jhes/article/view/1819
Malla, R., Neupane, P. R., & Köhl, M. (2023). Climate change impacts: Vegetation shift of broad-leaved and coniferous forests. Trees, Forests and People, 14, 100457.
https://doi.org/10.1016/j.tfp.2023.100457
Pandey, R., Rawat, M., Pathak, A., Mehta, D., Bala, N., Bhatt, I. D., & Chaturvedi, R. K. (2023). Identification of functional traits responsible for environmental vulnerability of Cedrus deodara in temperate forests of Western Himalaya. Ecological Indicators, 157, 111302.
https://doi.org/10.1016/j.ecolind.2023.111302
Paudel, B. R., Subedi, C. K., Ghimire, S. K., Pyakurel, D., Rajbhandari, M., & Chaudhary, R. P. (2025). Impacts of climate change on the distribution pattern of Himalayan Rhubarb (Rheum australe D. Don) in Nepal Himalaya. PLOS ONE, 20(5), e0323755. https://doi.org/10.1371/journal.pone.0323755
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum Entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
R Core Team, 2025. version: 4.4.2. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org
Rahman, I. U., Hart, R. E., Ijaz, F., Afzal, A., Iqbal, Z., Calixto, E. S., Abd_Allah, E. F., Alqarawi, A. A., Hashem, A., Al-Arjani, A.-B. F., Kausar, R., & Haq, S. M. (2022). Environmental variables drive plant species composition and distribution in the moist temperate forests of Northwestern Himalaya, Pakistan. PLOS ONE, 17(2), e0260687. https://doi.org/10.1371/journal.pone.0260687
Rahman, A. U., Ali, A., Khalid, M. O., Ahmad, T., Rajpar, M. N., Ullah, I., & Hu, D. (2024). Exploring avian ecology, habitat associations, and correlations with vegetation structure in Badgoi Coniferous Forest, Upper Dir, Khyber Pakhtunkhwa, Pakistan. Applied Ecology and Environmental Research, 22(4), 3285–3301. https://doi.org/10.15666/aeer/2204_32853301
Ranjitkar, S., Xu, J., Shrestha, K. K., & Kindt, R. (2014). Ensemble forecast of climate suitability for Trans-Himalayan Nyctaginaceae species. Ecological Modelling, 282, 18–24. https://doi.org/10.1016/j.ecolmodel.2014.03.003
Ray, R., Gururaja, K. V., & Ramchandra, T. V. (2011). Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. Journal of Environmental Biology, 32(6), 725. Retrieved from http://www.jeb.co.in
Reese, G. C., Wilson, K. R., Hoeting, J. A., & Flather, C. H. (2005). Factors affecting species distribution predictions: A simulation modeling experiment. Ecological Applications, 15(2), 554–564. https://doi.org/10.1890/03-5374
Shah, A., Ali, K., Nizami, S. M., Jan, I. U., Hussain, I., Begum, F., & Khan, H. (2019). Risk assessment of Shishper Glacier, Hassanabad Hunza, North Pakistan. Journal of Himalayan Earth Sciences, 52(1), 1–11. http://ojs.uop.edu.pk/jhes/article/view/1844
Sharma, A., Prashar, B., & Arora, P. (2018). Cedrus deodara: A medicinal herb. International Journal of Current Research, 10(02), 65758-65762. Retrieved from https://www.researchgate.net/publication
Tayyab, M., Muhammad, S., Nawaz, H., Ali, A., Malik, S. M., Waheed, M., Rasool, K., Khan, M. J. T., Khan, Z., & Zahid, M. (2023). Climatically induced anomalies in tree-ring structure of Abies pindrow and Taxus baccata in Hindu Kush Region of Pakistan. Environmental Research Communications, 5(6), 065002. https://doi.org/10.1088/2515-7620/acd7c8
Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C., & Guisan, A. (2014). Measuring the relative effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution, 5(9), 947–955. https://doi.org/10.1111/2041-210X.12203
Tsujimoto, M., Kajikawa, Y., Tomita, J., & Matsumoto, Y. (2018). A review of the ecosystem concept—towards coherent ecosystem design. Technological Forecasting and Social Change, 136, 49-58. https://doi.org/10.1016/j.techfore.2017.06.032
Verma, A. K. (2018). Ecological balance: An indispensable need for human survival. Journal of Experimental Zoology, India, 21(1), 407–409.
Waheed, M., Haq, S. M., Arshad, F., Jameel, M. A., Siddiqui, M. H., Bussmann, R. W., Manshoor, N., & Alamri, S. (2023). Where will threatened Aegle marmelos go under climate change? Implications for the reintroduction of the species. Land, 12(7), 1433. https://doi.org/10.3390/land12071433
Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004