Petrography of Sandstones from the Kamlial and Chinji Formations, Southwestern Kohat Plateau, NW Pakistan: Implications for Source Lithology and Paleoclimate

Authors

  • Kafayat Ullah Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
  • Mohammad Arif Department of Geology, University of Peshawar
  • Mohammad Tahir Shah National Centre of Excellence in Geology, University of Peshawar, Pakistan

Abstract

The Kamlial and Chinji formations of the southwestern Kohat plateau (Himalayan Foreland basin) dominantly consist of sandstones and shales deposited in a terrestrial foreland basin that developed in response to the Himalayan orogenic movements. Detailed petrographic studies of representative samples from three different sections reveal that both the Kamlial and Chinji sandstones contain abundant quartz with subordinate feldspars, variable proportions of lithic grains, accessory amounts of micas and traces of a number of heavy minerals. The feldspar content mostly ranges from 18 to 30% and 24 to 28% in the Kamlial and Chinji sandstones, respectively. The abundance of lithic grains shows a wide range of variation (11 to 35%). Although the lithics are mainly sedimentary, but fragments of volcanic and low-grade metamorphic rocks also occur in appreciable amounts. Micas, including both muscovite and biotite, are generally less than 10 % of the total detrital grains. The observed heavy minerals include epidote, monazite, apatite, garnet, zircon, rutile and brown hornblende. The crystals of zircon, monazite, rutile, epidote and mica also occur as tiny inclusions in quartz grains.

On the basis of modal composition, the Kamlial and Chinji sandstones fall into the groups of feldspathic and lithic arenites. The former mostly originates by the weathering of feldspar-rich crystalline rocks whereas the latter is believed to be derived from rugged high-relief source areas. The presence of appreciable amount of feldspars in all the studied sandstone samples favors either high relief or arctic climate at the source area. The overall variation in the relative abundance of different types of quartz grains (monocrystalline including both non-undulatory and undulatory types and polycrystalline containing 2-3 and >3 subgrains) in the Kamlial sandstone indicates derivation from medium-high grade metamorphic rocks with subsidiary contribution from low grade metamorphic rocks. In comparison, the same parameter shows almost equal contribution from medium-high grade and low-grade metamorphic rock provenance for the Chinji sandstone. Similarly, the consistent presence of mica, epidote, and garnet also indicates a source region composed of metamorphic rocks. On the other hand, the average contents of different types of quartz grains from the Kamlial and Chinji Formations show granitic and/or gneissic source. The greater abundance of alkali feldspar than plagioclase further supports this conclusion. Similarly, the higher amount of non-undulatory monocrystalline quartz than the undulatory one suggests the presence of plutonic and volcanic rocks in the source area or, alternatively, a long distance/amount of transport of the detritus. Furthermore, the intersectional variation in modal composition and types of quartz grains in both the Kamlial and Chinji sandstones suggest a strong spatial control on their deposition.

References

Abbasi, I. A., 1991. Large scale vertical aggradations of sandstone in the Kamlial Formation of the Kohat Basin, Pakistan. Geological Bulletin University of Peshawar, 24, 33-44.

Abbasi, I. A., 1998. Major pattern of fluvial facies and evolution of the Himalayan Foreland Basin, southeastern Kohat Plateau, Pakistan. In: Ghaznavi, M. I., Raza, S. M., Hasan, M. T., (Eds), Siwaliks of South Asia. Geological Survey of Pakistan, 59-70.

Abbasi, I. A., Friend, P. F., 1989. Uplift and evolution of the Himalayan orogenic belt, as recorded in the foredeep sediments. In: Derbyshire, E., Owen, L. A., (Eds), The Neogene of the Karakoram and Himalayas, Zeitschrift fur Geomorphologie Special Publication, 76, 75-88.

Abbasi, I. A., Khan, M. A., 1990. Heavy mineral analysis of the molasse sediments, Trans Indus Ranges Kohat, Pakistan. Geological Bulletin University of Peshawar, 23, 215-229.

Abid, I. A., Abbasi, I. A., Khan, M. A., Shah, M. T., 1983. Petrography and geochemistry of the Siwalik sandstone and its relationship to the Himalayan orogeny. Geological Bulletin University of Peshawar, 16, 65-83.

Asiedu, D. K., Suzuki, S., Shibata, T., 2000. Provenance of sandstones from the Lower Cretaceous Sasayama Group, Inner Zone of Southwest Japan. Sedimentary Geology, 131, 9-24.

Basu, A., 1976. Petrology of Holocene fluvial sand derived from plutonic source rocks, implication to plaeoclimaric interpretations. Journal of Sedimentary Petrology, 46, 694-709.

Basu, A., 1985. Influence of climate and relief on composition of sands released at source area. In: Zuffa G. G., (Ed), Provenance of Arenites NATO ASI Series, Reidel Publication Company, 1-18.

Basu, A. S. W., Young, L. J., James, W. C., Mack, G. H., 1975. Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45, 873-882.

Blatt, H., Middleton, G. V., Murray, R. C., 1980. Origin of sedimentary rocks. Prentice Hall Inc., 87. Boggs, S., 1992. Sedimentary Petrology. Blackwell Scientific Publications.

Calkin, J. A., Offield, T. W., Abdulah, S. K. M., Tayyab, A. S., 1975. Geology of the southern Himalayan in Hazara, Pakistan, and adjacent areas. U.S. Geological Survey Professional Paper, 716-C, 29.

Dubey, N. Chatterjee, B. K. 1997. Sandstones of Mesozoic Kachchh Basin: Their Provenance and Basinal Evolution. Indian J. Petrol. Geol., 6, 55-68.

Critelli, S., Le Pera, E., Ingersoll, R. V., 1997. The effects of source lithology, transport, deposition and sampling scale on the composition of southern California sand. Sedimentology, 44, 653-671.

Dabbagh, M. E., Rogers, J. J., 1983. Depositional environments and tectonic significance of the Wajid Sandstone of southern Saudi Arabia. Journal of African Earth Sciences, 1, 47-57.

Dickinson, W. R., 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, 40, 695-707.

Dickinson, W. R., 1985. Interpreting provenance relations from detrital modes of sandstones. In: (Zuffa, G. G., (Ed), Provenance of Arenites NATO ASI Series, Reidel Publication Company, 333-361.

Dickinson, W. R., Suczek, C. A., 1979. Plate tectonics and sandstone composition. American Association of Petroleum Geologist Bulletin, 63, 2164-2182.

DiPietro, J. A., Isachsen, C. E., 2001. U-Pb zircon ages from the Indian plate in northeast Pakistan and their significance to Himalayan and pre-Himalayan geologic history. Tectonics, 20, 510-525.

DiPietro, J. A., Pogue, K. R., 2004. Tectonostratigraphic subdivisions of the Himalaya: a view from the west. Tectonics 23, TC5001. doi:10.1029/2003TC001554.

Fatmi, A., 1973. Lithostratigraphic units of the Kohat– Potwar Province, Indus Basin, Pakistan. Memoir Geological Survey of Pakistan, 10.

Folk, R. L., 1974. Petrology of Sedimentary Rocks. Hemphill Press, Austin, Texas.

Gaetani, M., Garzanti, E., Jadoul, F., Nicora, A., Tintori, A., Pasini, M., Kanwar, S. A. K., 1990. The north Karakorum side of the central Asia geopuzzle. Geological Society of America Bulletin, 102, 54-62.

Gansser, A., 1964. The Geology of the Himalayas. Wiley Interscience, New York.

Garzanti, E., Vezzoli, G., Ando, S., Paparella, P., Clift, P. D., 2005. Petrology of Indus River sands: a key to interpret erosion history of the Western Himalayan Syntaxis. Earth and Planetary Science Letters, 229, 287-302.

Girty, G. H., Mossman, B. J., Pincus, S. D., 1988. Petrology of Holocene sand, Peninsular Ranges, California and Baja Norte, Mexico: implications for provenance-discrimination models. Journal of Sedimentary Petrology, 58, 881-887.

Heim, A., Gansser, A., 1939. Central Himalaya. Geological observations of the Swiss expedition 1936. Hindustan Publishing Corporation Delhi, 1246.

Hussain, A., Yeats, R. S., Pogue, K., 1989. Stratigraphie and structural events around the southern margin of Peshawar Basin. Geological Bulletin University of Peshawar, 22, 45-54.

Ingersoll, R. V., Suczek, C. A., 1979. Petrography and provenance of Neogene sand from Nicobar and Bengal fans. DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49, 1217-1228.

Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D. & Sares, S.W., 1984. The effect of grain size on detrital modes: A test of the Gazzi Dickinson point counting method. Journal of Sedimentary Petrology, 54, 103-116.

Jan, M. Q., 1985. High-P rocks dong the suture zones around the Indo-Pakistan plate and phase chemistry of blueschist from eastern Ladakh. Geological Bulletin University Peshawar, 18, 1-40.

Jan, M. Q., 1988. Geochemistry of amphibolites from the southern part of the Kohistan arc, N Pakistan. Mineralogical Magazine, 52, 147-159.

Jan, M. Q., Asif, M., Tahirkheli, T., Kamal, M., 1981. Tectonic subdivision of granitic rocks of north Pakistan. Geological Bulletin University of Peshawar, 14, 159-182.

Jaume, S., Lillie, R., 1988. Mechanics of the Salt Range, Potwar Plateau, Pakistan: a fold and thrust belt underlain by evaporites. Tectonics, 5, 57-71.

Johnson, M. N., Stix, J., Tauxe, L., Cerveny, P. F., Tahirkheli, R. A. K., 1985. Paleomagnetic chronology, fluvial process and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan. Journal of Geology, 93, 27-40.

Johnson, N. M., Opdyke, N. D., Johnson, G. D., Lindsay, E. H., Tahirkheli, R. A. K., 1982. Magnetic polarity stratigraphy and ages of Siwalik Group rocks of the Potwar Plateau, Pakistan. Palaeo, 37, 17-42.

Kazmi, A. H., Lawrence, R. D., Dawood, H., Snee, L. W., Hussain, S. S., 1984. Geology of the Indus suture zone in the Mingora-Shangla area of Swat, N. Pakistan. Geological Bulletin University of Peshawar, 17, 127-144.

Khan, M. J., Opdyke, N. D., 1993. Position of the PaleoIndus as revealed by the magnetic stratigraphy of the Shinghar and Surghar ranges, Pakistan. In: Shroder, J. F. (Ed), Himalaya to sea: Geology, Geomorphology and the Quaternary Routledge Press, London, 198-212.

Khan, M. A., Ahmed, R., Raza, H. A., Kemal, A., 1986. Geology of petroleum in Kohat-Potwar depression, Pakistan. American Association of Petroleum Geologists Bulletin, 70, 396-414.

Le Fort, P., 1996. Evolution of the Himalaya. In: Yin, A., Harrison, T. M., (Eds), The Tectonic Evolution of Asia, Cambridge University Press, Cambridge, 95-109.

Lewis, 1937. “A new Siwalik correlation (India).” American Journal of Science, 33, 191-204.

Mackey, S. D., Bridge, J. S., 1995. Three-dimensional model of alluvial stratigraphy: theory and application. Journal of Sedimentary Research, 65, 7–31.

Meissner, C. R., Master, J. M., Rashid, M. A., Hussain, M., 1974. Geology of the Kohat Quadrangle, West Pakistan. U. S. Geological Survey, (IR), PK-28, 175.

Michaelsen, P., Henderson, R. A., 2000. Sandstone petrofacies expressions of multiphase basinal tectonics and arc magmatism: Permian-Triassic north Bowen Basin, Australia. Sedimentary Geology, 136, 113-136.

Morton, A. C., Davies, J. R., Waters, R. A., 1992. Heavy minerals as a guide to turbidite provenance in the Lower Paleozoic Southern Welsh Basin: a pilot study. Geological Magazine, 129, 573-580.

Okada, H., 1971. Classification of sandstones: analysis and proposals. Journal of Geology, 79, 509-525.

Parrish, R. R., Hodges, K. V., 1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan Sequences, Nepalese Himalaya. Geological Society of America Bulletin, 108, 904911.

Pascoe, E. H., 1963. A manual of geology of India and Burma. III: Ibid, Calcutta, 1344-2130.

Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone. Springer, New York.

Pilgrim, G. E., 1913. The correlation of the Siwaliks with mammal horizon of Europe. Geological Survey India, Records 43(4), 267, 318, 321.

Pinfold, E. S., 1918. Notes on structure and stratigraphy in the North-West Punjab. India Geological Survey Records, 49 (3), 137-160.

Pivnik, D. A., Wells, N. A., 1996. The transition from Tethys to the Himalaya as recorded in northwest Pakistan. Geological Society America Bulletin, 108, 1295-1313.

Pogue, K. R., Hylland, M. D., Yeats, R. S., Khattak, W. U., Hussain, A., 1999. Stratigraphic and structural framework of Himalayan foothills, northern Pakistan. In: Macfarlane, A., Sorkhabi, R. B., Quade, J., (Eds), Himalaya and Tibet: Mountain Roots to Mountain Tops. Geological Society of America Special Paper, 328, 257-274.

Prothero, D. R., Schwab, F., Schwab, F. L., Schwab, F. L., 2003. Sedimentary Geology. W. H. Freeman and Company, 99-126.

Robertson, A. H. F., Degnan, P. J., 1993. Sedimentology and tectonic implications of the Lamayuru Complex: Deep water facies of the

Indian Passive margin. In: Treloar, P. J., Searle, M. P., (Eds.), Himalayan tectonics. Geological Society London Special Publication, 74, 299–322.

Rumelhart, P. E., Ingersoll, R. V., 1997. Provenance of the upper Miocene Modelo Formation and subsidence analysis of the Los Angeles basin, southern California: Implications for paleotectonic and paleogeographic reconstructions. Geological Society of America Bulletin, 109, 885-899.

Searle, M. P., 1983. Stratigraphy, structure and evolution of the Tibetan-Tethys zone in Zanskar and the Indus suture zone in the Ladakh Himalaya: Royal Society, Edinb. Transac., Earth Science., 73, 205-219.

Stratigraphic Committee of Pakistan, 1964. Minutes of the seventh meeting. Pakistan Geological Survey, Open File Report.

Tahirkheli, R. A. K., 1982. Geology of the Himalaya, Karakoram and Hindu Kush in Pakistan. Geological Bulletin University of Peshawar,

Special Issue, 15, 51.

Thakur, V. C., 1992. Geology of the western Himalaya: Oxford, Pergammon Press, 363.

Tortosa, A., Palomares, M., Arribas, J., 1991. Quartz grain types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. Geological Society London Special Publication, 57, 47-54.

Treloar, P. J., 1989. Imbrication and unroofing of the Himalayan thrust stak of the north Indian plate, north Pakistan. Geological Bulletin University of Peshawar, 22, 25-44.

Treloar, P., Searle, M. P., 1993. Himalayan Tectonics. Geological Society Special Publication, 74, 630.

Tucker, M. E., 1992. Sedimentary Petrology. Blackwell Scientific Publications.

Valdiya, K. S., Bhatia, S. B., 1980. Stratigraphy and correlations of Lesser Himalayan Formations, India. Hindustan Publishing Corporation.

Willis, B. I., Behrensmeyer, A. K., 1994. Architecture of Miocene overbank deposits in northern Pakistan. Journal of Sedimentary Research, B64, 60-67.

Yeats, R. S., Lawrence, R. D., 1984. Tectonics of the Himalayan thrust belt in northern Pakistan. In: Haq B. U., Milliman, J. D., (Eds), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, Van Nostrand, Reinhold, New York, 177-198.

Yin, A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Science Reviews, 76, 1-131

Young, S.W., 1976. Petrographic textures of detrital polycrystalline quartz as an aid to interpreting crystalline source rocks. Journal of Sedimentary Petrology, 46, 595-603.

Zeitler, P. K. 1985. Cooling history of the NW Himalaya, Pakistan. Tectonics, 4, 127-51.

Downloads

Published

2006-11-30

How to Cite

Ullah, K., Arif, M., & Shah, M. T. (2006). Petrography of Sandstones from the Kamlial and Chinji Formations, Southwestern Kohat Plateau, NW Pakistan: Implications for Source Lithology and Paleoclimate . Journal of Himalayan Earth Sciences, 39(1), 1-13. Retrieved from http://ojs.uop.edu.pk/jhes/article/view/1604

Most read articles by the same author(s)

1 2 3 4 5 > >>